
The Bounded Model Checker LLBMC
Stephan Falke Florian Merz Carsten Sinz

Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{stephan.falke, florian.merz, carsten.sinz}@kit.edu

Abstract—This paper presents LLBMC, a tool for finding bugs
and runtime errors in sequential C/C++ programs. LLBMC
employs bounded model checking using an SMT-solver for the
theory of bitvectors and arrays and thus achieves precision down
to the level of single bits. The two main features of LLBMC that
distinguish it from other bounded model checking tools for C/C++
are (i) its bit-precise memory model, which makes it possible to
support arbitrary type conversions via stores and loads; and (ii)
that it operates on a compiler intermediate representation and
not directly on the source code.

I. INTRODUCTION

Due to the use of unbounded data structures such as linked
lists or trees, property checking of programs is in general
undecidable. A promising approach for finding bugs and
runtime errors in such programs is bounded model checking.
While originally introduced in the context of hardware designs,
the technique was quickly adapted for C programs by Clarke et
al. [6]. Nowadays, bounded model checking is routinely used
in an industrial setting, both for hardware and for checking
a variety of aspects of embedded and low-level systems
software.

The main idea of bounded model checking is to only
consider finite program runs, thereby obtaining a decidable
(but incomplete) method for finding bugs and runtime errors.
Finiteness of program runs is achieved by restricting the
number of loop iterations and nested function calls that are
considered. A tool based on bounded model checking then
typically performs loop unrolling and function inlining up to
these bounds, resulting in one large function that only admits
finite runs. This function is then subject to further analysis.

Writing a program analysis tool that supports all features
of a high-level programming language such as C/C++ is a
daunting task due to the complex and intricate syntax and
semantics that these programming languages employ. Thus,
it has recently become more and more popular to analyze
programs not on the source code level but on the level
of a compiler intermediate representation (IR) instead. This
approach has several advantages:

• The IR has much simpler syntax and semantics than
C/C++. This makes it relatively easy to support (nearly)
all language features.

• The program that is analyzed is much closer to the
program that is actually executed on the computer since
semantical ambiguities have already been resolved by the
compiler. Furthermore, it becomes possible to analyze

programs at various optimization levels offered by the
compiler.

• It becomes possible to analyze programs in any language
for which a compiler frontend that produces the IR is
available.

Concretely, LLBMC operates on LLVM’s IR [14], which is an
SSA-based abstract assembly language.
LLBMC is fully automatic and requires minimal preparation

efforts and user interaction. The tool can help to
• reduce the time and effort needed for software testing,
• improve the quality of software, and
• obtain stable and secure software in shorter time.
Due to its high precision, LLBMC produces almost no false

alarms (false positives). Due to the exhaustive list of built-in
checks, many common bugs and runtime errors can be detected
without relying on user-provided annotations. These built-in
checks include:

• Integer overflow and underflow
• Division by zero
• Invalid bit shifts
• Illegal memory access (array index out of bound, illegal

pointer access, etc.)
• Invalid free, including double free
• User-provided assertions (assert)
Limitations of LLBMC are the bounded analysis (which

makes it incomplete) and program-dependent, sometimes re-
stricted scalability.

The bounded model checker LLBMC is available under a
non-commercial (academic) license or under a limited-time
evaluation license at http://llbmc.org. The website
also contains installation and usage instructions for LLBMC,
including a video demonstrating LLBMC being used.

A. Related Tools

In 2004, Clarke et al. were the first to describe bounded
model checking of C programs [6], resulting in the tool CBMC.

Also in 2004, NEC Laboratories America implemented a
bounded model checking approach for C programs in the
tool F-Soft as described in [13]. They differentiate their
tool from CBMC by applying several static program analysis
techniques on the control-flow graph in order to simplify the
bounded model checking problem.

In 2009, Armando et al. extended CBMC to use SMT-solvers
instead of encoding the problem directly into SAT [1]. Results



from that paper clearly show the benefits of using SMT-solvers
instead of SAT-solvers as done by both CBMC and F-Soft.

In the same year, Cordeiro et al. presented ESBMC [7],
which is based on CBMC but uses an SMT-solver instead of a
SAT-solver. The main novelty of ESBMC is its added support
for finding bugs in multi-threaded software. Recently, support
for C++ programs was added to ESBMC [17].

Symbolic execution is a different approach to bug-finding
in programs. In contrast to bounded model checking, which
encodes all execution paths up to a bounded length in a
single formula, symbolic execution performs a symbolic path
exploration that considers the paths separately. The constraints
obtained for each path are solved using SAT- or SMT-solvers.
Recent symbolic execution tools include KLEE [5] for C
programs and KLOVER [15], which extends KLEE for C++
programs. Both KLEE and KLOVER operate not on the source
code level but on the level of LLVM’s IR.

A recent tool that combines features of symbolic execution
and bounded model checking and targets C programs is LAV
[21]. Like KLEE, KLOVER, and LLBMC, the tool LAV also
operates on the level of LLVM’s IR.

II. A BRIEF OVERVIEW OF LLBMC

The overall approach of LLBMC is summarized in Fig. 1,
where further details can be found in [16], [20], [10].

code

logic

C/C++ code

LLVM IR

ILR formula

SMT-LIB formula SMT-LIB model

ILR model

LLVM IR counter-example

C/C++ counter-example

compile

encode & inline

convert

solve

un
ro

ll
si

m
pl

if
y

Fig. 1: Overview of LLBMC’s approach.

The C/C++ program under investigation is first compiled
into LLVM’s IR using the existing compiler (frontend) clang.
The unrolling of loops up to a user-provided or automatically
determined bound is then performed as a transformation of
the IR program using LLVM’s comprehensive transformation
framework. Subsequently, the IR program is encoded into
LLBMC’s intermediate logical representation ILR, which ex-
tends the logic QF ABV of SMT-LIB [2] by various constructs
for encoding the built-in checks of LLBMC and by high-level
constructs for manipulating arrays [11], [9]. In contrast to loop
unrolling, function inlining is done on-the-fly during encoding
and not as a transformation of the IR program.1

Next, the ILR formula is simplified using an extensive set
of rewrite rules. These rewrite rules are sufficient to discharge

1In the future, we are planning to also perform the unrolling of loops on-
the-fly during encoding.

many “easy” proof obligations before invocation of an SMT-
solver. Finally, the ILR formula is lowered into an SMT-LIB
formula by expanding any remaining constructs related to the
built-in checks. This SMT-LIB formula is then solved using
the SMT-solver STP [12].

If the SMT-LIB formula is satisfiable, then each model
corresponds to a found bug or runtime error. A model of
the SMT-LIB formula is then converted into a model of the
ILR formula which is subsequently used in order to construct
a counter-example (error trace) on the level of LLVM’s IR
within LLBMC. We are currently working on extending LLBMC
to construct counter-examples on the level of C/C++. This
construction relies on the debug information that is inserted
by clang into the LLVM IR program.

An important feature that sets LLBMC apart from the tools
surveyed in Sect. I-A is its bit-precise unified memory model
for heap, stack, and global variables. LLBMC is thus able to
find hard-to-detect memory access errors like heap or stack
buffer overflows. Details on this can be found in [19], [8].

III. USAGE SCENARIOS

This section presents two usage scenarios of LLBMC. In the
first scenario, it is shown how user-defined assertions can be
checked. In the process of doing this, the bug-finding capa-
bilities of LLBMC using the built-in checks are demonstrated
as well. The second usage scenario demonstrates how LLBMC
can be used in order to check the equivalence of two functions.

A. Checking Assertions
Consider the simple C function shown in Fig. 2a which

is supposed to compute the absolute value of an int. For
ensuring correctness, the user wants to check that the return
value is always non-negative. First, the C program is converted
into LLVM’s IR using

clang -c -emit-llvm -g abs.c -o abs.bc

which produces the file abs.bc containing the binary bitcode
representation of LLVM’s IR. Next, LLBMC is run on this
bitcode file using

llbmc abs.bc

This results in the output given in Fig. 2b (on a 32-bit
machine). The abs function thus contains an overflow bug
which occurs when INT_MIN is passed to the function since
-INT_MIN cannot be represented using 32 bits.

In order to not report overflow bugs, LLBMC can be run
using the “--no-overflow-checks” command line ar-
gument, i.e., using

llbmc abs.bc --no-overflow-checks

An overflow occurring in the program is then modeled using
two’s complement arithmetic, just as it is done on most
computers. In this case, LLBMC produces the output in Fig. 2c,
showing that the user-defined assertion fails if INT_MIN is
passed to abs. The reason for this is that -INT_MIN =
INT_MIN in two’s complement arithmetic, i.e., abs returns
a negative number for this input.



#include <assert.h>

int abs(int x)
{

int ret;

if (x >= 0) {
ret = x;

} else {
ret = -x;

}

assert(ret >= 0);

return ret;
}

(a) C program.

Error synopsis:
===============

A signed overflow occurs in
%sub = sub nsw i32 0, %x, !dbg !17

where
%x = -2147483648

and the result is
%sub = -2147483648

Error location:
===============

Source file: abs.c
Line number: 10
Error context:

5: int ret;
6:
7: if (x >= 0) {
8: ret = x;
9: } else {
10: ret = -x;

ˆˆˆˆˆˆˆˆˆ
11: }

Stack trace:
============

#0 i32 @abs(i32 %x=-2147483648)

(b) Result produced by LLBMC.

Error synopsis:
===============

Assertion failed.

Error location:
===============

Source file: abs.c
Line number: 13
Error context:

8: ret = x;
9: } else {
10: ret = -x;
11: }
12:
13: assert(ret >= 0);

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
14:

Stack trace:
============

#0 i32 @abs(i32 %x=-2147483648)

(c) Result produced by LLBMC using the command line
argument --no-overflow-checks.

Fig. 2: Example and output for the “checking assertions” usage scenario.

B. Checking Equivalence

User-defined assertions can also be used in order to verify
equivalence of two functions that are supposed to compute
the same return values. In order to see how this can be
accomplished, consider the C program shown in Fig. 3.

The function popcount is supposed to compute the pop-
ulation count of an unsigned int, i.e., the number of
bits that are set to 1 (assuming that an unsigned int
consists of 32 bits). In order to verify that this is indeed
the case, the driver function __llbmc_main compares the
return value of popcount with the return value of a reference
implementation.2 Since x is passed as an argument to the
driver function, the assertion fails if and only if popcount
and the reference implementation disagree for some input
value. LLBMC needs slightly longer than one second in order
to show that the assertion never fails, i.e., popcount and the
reference implementation return the same result for all 232

possible values of x.

IV. EXPERIMENTS

A. Comparison with Related Tools

In order to evaluate LLBMC’s performance in comparison
with other bounded model checking tools, we compared it with

2Currently, this driver function needs to be provided by the user. It would
be easily possible to generate it automatically, similar to [18].

#include <assert.h>

unsigned int popcount(unsigned int x)
{

x = x - ((x >> 1 ) & 0x55555555);
x = (x & 0x33333333) +

((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x += (x >> 8);
x += (x >> 16);
return x & 0x0000003F;

}

unsigned int reference(unsigned int x)
{

int i, s = 0;
for(i = 0; i < 32; ++i)

if(x & (1 << i))
s++;

return s;
}

void __llbmc_main(unsigned int x)
{

assert(popcount(x) == reference(x));
}

Fig. 3: Example for the “checking equivalence” usage scenario.



CBMC [6] and ESBMC [7] in [16].3 The 175 C programs for this
comparison were taken from a variety of papers and sources
(the benchmark collection is available at http://llbmc.
org). The comparison did not include any C++ programs
since ESBMC did not support C++ until very recently [17]
and CBMC’s C++ support is still very rudimentary.

The evaluation was performed on an Intel R© CoreTM 2 Duo
machine with 2.4GHz. For each program, the memory limit
was set to 2.5GB and the time limit was set to 15 minutes.
The results of the comparison are summarized in Tab. I, while
a more thorough discussion can be found in [16].

S O F I
LLBMC 172 1 0 2
CBMC 3.9 119 8 12 36
ESBMC 1.16 137 8 15 15

TABLE I: Results of the evaluation. “S” denotes the number of
successfully solved instances (correctly detected bugs or absence of
bugs proved), “O” the number of times the tool ran out of time or
memory, “F” the number of failures to handle the program, and “I”
the number of incorrect results (i.e., the tool reports a non-existing
“bug” or misses a bug).

Note that LLBMC is able to successfully solve (i.e., find
bugs or prove absence of bugs) over 25% more benchmarks
than the second-best tool in the comparison and has a very
low rate of false positives.

B. Participation in SV-COMP

In order to assess LLBMC’s ability to operate on real-life
programs, the tool participated in the 1st and 2nd International
Competition on Software Verification (SV-COMP 2012 [3],
[20] held at TACAS 2012 and SV-COMP 2013 [4], [10] held
at TACAS 2013). Overall, LLBMC performed very well:

• In SV-COMP 2012, the participating tools were evaluated
on 277 C programs in 6 categories. The size of the C
programs ranged from 20 LOC to 182 kLOC. LLBMC
participated in 5 categories and won the gold medal in
the category “DeviceDrivers” and the silver medal in the
category “HeapManipulation”.

• In SV-COMP 2013, the participating tools were evaluated
on 2315 C programs in 10 categories. The size of the C
programs ranged from 13 LOC to 182 kLOC. LLBMC par-
ticipated in 7 categories and won a total of 6 medals: gold
in the categories “BitVectors” and “Loops” and silver
in the categories “FeatureChecks”, “HeapManipulation”,
“MemorySafety”, and “ProductLines”.

C. MPEG2 Case Study

For a further experiment, we tested LLBMC on the MPEG2
decoder of the MPEG Software Simulation Group available
from http://www.mpeg.org. The source code of this
decoder consists of more than 10 kLOC of C code. We
checked the inverse fast discrete cosine transformation (IDCT)

3The bounded model checking tools F-Soft [13] and SMT-CBMC [1]
mentioned in Sect. I-A are not publicly available.

of this decoder with LLBMC and discovered a buffer overflow
bug in function idctcol within 8 seconds. This bug may be
exploited by passing a specially prepared video to the decoder.

V. CONCLUSIONS

In this paper, we have presented the bounded model checker
LLBMC, a tool for finding bugs and runtime errors in sequential
C/C++ programs. We have given a brief overview of LLBMC’s
approach. Using two representative usage scenarios, we have
shown how LLBMC can be used by software engineers in
order to improve the quality of software and obtain stable and
secure programs. Finally, we have reported on experiments
that demonstrate the performance of the tool.

REFERENCES

[1] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using SMT solvers instead of SAT solvers,” STTT, vol. 11,
no. 1, pp. 69–83, 2009.

[2] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard: Version
2.0,” 2012. [Online]. Available: http://www.smt-lib.org

[3] D. Beyer, “Competition on software verification (SV-COMP),” in TACAS
2012, ser. LNCS, vol. 7214, 2012, pp. 504–524.

[4] ——, “Second competition on software verification (summary of SV-
COMP 2013),” in TACAS 2013, ser. LNCS, vol. 7795, 2013, pp. 594–
609.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI 2008, 2008, pp. 209–224.

[6] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS 2004, ser. LNCS, vol. 2988, 2004, pp. 168–176.

[7] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-based bounded
model checking for embedded ANSI-C software,” in ASE 2009, 2009,
pp. 137–148.

[8] S. Falke, F. Merz, and C. Sinz, “A theory of C-style memory allocation,”
in SMT 2011, 2011, pp. 71–80.

[9] ——, “Extending the theory of arrays: memset, memcpy, and beyond,”
in VSTTE 2013, ser. LNCS, 2013, to appear.

[10] ——, “LLBMC: Improved bounded model checking of C programs
using LLVM (competition contribution),” in TACAS 2013, ser. LNCS,
vol. 7795, 2013, pp. 623–626.

[11] S. Falke, C. Sinz, and F. Merz, “A theory of arrays with set and copy
operations (extended abstract),” in SMT 2012, 2012, pp. 97–106.

[12] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in CAV 2007, ser. LNCS, vol. 4590, 2007, pp. 519–531.

[13] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, and P. Ashar, “Efficient
SAT-based bounded model checking for software verification,” TCS, vol.
404, no. 3, pp. 256–274, 2008.

[14] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO 2004, 2004, pp.
75–88.

[15] G. Li, I. Ghosh, and S. Rajan, “KLOVER: A symbolic execution and
automatic test generation tool for C++ programs,” in CAV 2011, ser.
LNCS, vol. 6806, 2011, pp. 609–615.

[16] F. Merz, S. Falke, and C. Sinz, “LLBMC: Bounded model checking of
C and C++ programs using a compiler IR,” in VSTTE 2012, ser. LNCS,
vol. 7152, 2012, pp. 146–161.

[17] M. Ramalho, M. Freitas, F. Sousa, H. Marques, L. Cordeiro, and
B. Fischer, “SMT-based bounded model checking of C++ programs,”
in ECBS 2013, 2013, pp. 147–156.

[18] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in CAV 2011, ser. LNCS, vol. 6806, 2011,
pp. 669–685.

[19] C. Sinz, S. Falke, and F. Merz, “A precise memory model for low-level
bounded model checking,” in SSV 2010, 2010.

[20] C. Sinz, F. Merz, and S. Falke, “LLBMC: A bounded model checker
for LLVM’s intermediate representation (competition contribution),” in
TACAS 2012, ser. LNCS, vol. 7214, 2012, pp. 542–544.

[21] M. Vujošević-Janičić and V. Kuncak, “Development and evaluation of
LAV: An SMT-based error finding platform,” in VSTTE 2012, ser.
LNCS, vol. 7152, 2012, pp. 98–113.


