
A Theory of C-Style Memory Allocation?

Stephan Falke, Florian Merz, and Carsten Sinz

Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany

{stephan.falke, florian.merz, carsten.sinz}@kit.edu
http://verialg.iti.kit.edu

Abstract. This paper introduces the theory TH for reasoning about the correctness of memory access operations
in the context of a C-style heap memory. The proposed approach makes a clear distinction between reasoning
about the values stored in memory and checking whether access to a specific memory location is allowed. The
theory provides support for malloc and free and is presented in the form of axioms that can be converted into
conditional rewrite rules. It is also shown how TH can be used in a bounded model checker for C programs.

1 Introduction

Reasoning about memory access operations is an important part of many program verification tasks. Memory
access checks can, e.g., be used to detect heap or stack buffer overflows which may be exploited by malware
in attacks. In general, accessing unallocated memory can result in unpredictable program behavior, loss of
data, or program crashes.

Whereas several approaches for formalizing computer memory have been presented in the past (see,
e.g., [1, 2, 6, 7, 11–14, 17, 18]), models of heap (or stack) memory access control are not as widespread. This
is in particular true for weakly-typed programming languages such as C.

This paper develops the theory TH for reasoning about validity of heap memory access operations. TH is
suitable for a C-like memory management system using function calls to malloc and free for allocating
and deallocating memory on the heap. The formalization of TH has similarities to the theory of arrays TA
which is governed by McCarthy’s axioms for array read and write operations (sometimes also called read-
over-write axioms)

p = q ⇒ read(write(a, p, x), q) = x

p 6= q ⇒ read(write(a, p, x), q) = read(a, q)

These axioms state that writing the value x into an array a at index p and subsequently reading a’s value at
index q results in the value x if indices p and q are identical. Otherwise, the read operation is not influenced
by the preceding write operation. Arrays are often used to model the content of computer memory. In the
programming language C, memory can be regarded as a large array of byte values.

In [16], we have extended TA with capabilities for reasoning about the correctness of memory access
operations by adding suitable global constraints formalizing heap properties and memory access correctness
predicates. There are two major drawbacks to this approach. First, the approach does not perform local
reasoning but requires knowledge about all past heap-modifying operations. This global view does not lend
itself very well to modular reasoning. Second, the approach does not provide a “separation of concerns”, i.e.,
memory access control is intermixed with read and write operations. malloc and free modify the state

? This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of
the German Excellence Initiative.

of the memory allocation system, but do not modify the memory content in any of the allocated memory
blocks. Memory write operations, on the other hand, modify the content of allocated memory blocks, but
do not change the state of the memory allocation system. Memory accesses and their correctness are thus
separate concepts. Because of this, memory content and memory allocation state should be represented by
different objects since this makes it possible to reason about them separately.

2 Background

We first recall McCarthy’s theory of arrays TA.

Sorts E : elements
I : indices
A : arrays

Functions read : A× I → E
write : A× I × E → A

Axioms p = q ⇒ read(write(a, p, x), q) = x
p 6= q ⇒ read(write(a, p, x), q) = read(a, q)

Objects of sort A denote arrays, i.e., maps from indices of type I to elements of type E. The write
function is used to store an element in an array. Its counter-part, the read function, is used to retrieve an
element from an array.

In SMT-solvers for TA, the read-over-write axioms are typically applied from left to right using the
if-then-else operator ITE, i.e., a term read(write(a, p, x), q) is replaced by ITE(p= q, x, read(a, q)). After
this transformation has been applied exhaustively, only read operations remain, which can then be treated
as uninterpreted functions. The resulting formula can—if needed—be further transformed into pure equality
logic using Ackermann’s construction: for all array variables a, let Qa be the set of all index arguments that
occur in a read operation for a. Then, each occurrence of read(a, q) is replaced by a fresh variable Aq, and
further (consistency) constraints of the form q1 = q2 ⇒ Aq1 = Aq2 for all q1, q2 ∈ Qa are added as
constraints to the formula. An alternative way to deal with McCarthy’s axioms was presented in [4], adding
instances of this axiom lazily (on demand) in a refinement loop.

3 The Theory TH

This section gives the signature and axioms of the theory TH.

Sorts I : indices (pointers)
S : sizes
H : allocation system states

Functions ε :→ H
malloc : H × I × S → H

free : H × I → H
mallocsize : H × I → S

Predicates accessible : H × I × S
freeable : H × I

mallocable : H × I × S

ε denotes an “empty” heap object, i.e., a heap to which no memory allocation or deallocation operations
have been applied. malloc(h, p, s) denotes the heap obtained from h by allocating a memory block of size s
starting at address p (if the allocation is possible, i.e., if the block does not overlap with previously allocated
blocks; otherwise the heap state is not modified). Accesses to this memory region are valid in the new
heap. free(h, p) denotes the heap obtained from h by freeing the memory block starting at address p (if it is
currently allocated; otherwise the heap state is not modified). Accesses to this memory region are invalid in
the new heap. mallocsize(h, p) returns the size s if p is the first address of a memory region [p, p+ s) that is
currently allocated in h.

The theory TH does not allow equality tests between objects of sort H . Thus, extensionality axioms for
the equality of heap states are not needed.

The predicate accessible(h, p, s), the main predicate of TH, is used for checking validity of memory read
and write operations. It determines whether access to the memory region [p, p + s) is valid in the heap h,
i.e., whether it falls completely within a currently allocated memory region. freeable(h, p) determines if p
is the first address of a currently allocated memory region. In this case, the memory region pointed to by p
can safely be deallocated. Finally, mallocable(h, p, s) determines whether the memory region [p, p+ s) can
be allocated in h, i.e., does not interfere with any other currently allocated memory region.

In order to simplify presentation, we restrict ourselves to I = S = N in the following. Alternatively,
fixed-width bitvectors could be used (and we do so in our implementation).1

Auxiliary Predicates. For memory regions [p, p + s) and [q, q + t), the predicate disjoint(p, s, q, t) deter-
mines whether the regions are disjoint:

disjoint(p, s, q, t) := p+ s ≤ q ∨ q + t ≤ p

The predicate contained(p, s, q, t) determines whether the memory region [q, q + t) is completely con-
tained in the region [p, p+ s):

contained(p, s, q, t) := p ≤ q ∧ q + t ≤ p+ s

Axioms for mallocable. Recall that the intended semantics of mallocable(h, p, s) is that the region [p, p+s)
can be allocated in h. The exact meaning of this is explained in the following. First, TH assumes that mallocs
of size zero are not allowed.2 Thus,

mallocablesize(h, p, s)⇔ s 6= 0

Additionally, it needs to be ensured that distinct mallocs do not allocate overlapping regions of the heap.
There are several ways to formalize this requirement. In a first step, we use a simplified formalization which
achieves the non-overlapping property by enforcing that a malloc always returns an address that is larger
than all addresses used in previous mallocs (a more general formalization will be presented in Section 4).
This is stated by

mallocabletop(h, p, s)⇔ p ≥ heaptop(h)

1 Fixed-width bitvectors complicate the presentation due to overflow effects in bitvector arithmetic.
2 The C standard states that in this case the result is implementation-defined. Specific ways of how this is handled in concrete

implementations can easily be modeled in theories that extend TH.

This axiom makes use of the additional function symbol heaptop : H → I which is formalized by

heaptop(ε) = 0

heaptop(free(h, p)) = heaptop(h)

heaptop(malloc(h, p, s)) = p+ s

In the definition of heaptop(ε), a different constant that more accurately reflects the lowest address used
for heap memory on a system can be used instead of 0. The predicate mallocable is now defined as

mallocable(h, p, s) := mallocablesize(h, p, s) ∧mallocabletop(h, p, s)

Axioms for freeable. The intended semantics of freeable(h, p) is that p is the first address of a memory
region that is currently allocated in h. This semantics is captured by the following axioms:3

freeable(ε, q)⇔ ⊥
mallocable(h, p, s) ∧ p = q ⇒ freeable(malloc(h, p, s), q)⇔ >

¬(mallocable(h, p, s) ∧ p = q) ⇒ freeable(malloc(h, p, s), q)⇔ freeable(h, q)

p = q ⇒ freeable(free(h, p), q)⇔ ⊥
p 6= q ⇒ freeable(free(h, p), q)⇔ freeable(h, q)

Notice that, for each possible first argument of freeable (i.e., ε, malloc, or free), the conditions on the
left side of the implications cover all possible cases. This means that exactly one equivalence (on the right
hand side of the implication) is usable under any circumstances. This observation also holds for the axioms
in the following paragraphs.

Axioms for mallocsize. mallocsize(h, p) denotes the size of the currently allocated memory region which
starts at p (if such a region exists; otherwise mallocsize(h, p) is zero):

mallocsize(ε, q) = 0

freeable(h, p) ∧ p = q ⇒ mallocsize(free(h, p), q) = 0

¬(freeable(h, p) ∧ p = q) ⇒ mallocsize(free(h, p), q) = mallocsize(h, q)

mallocable(h, p, s) ∧ p = q ⇒ mallocsize(malloc(h, p, s), q) = s

¬(mallocable(h, p, s) ∧ p = q) ⇒ mallocsize(malloc(h, p, s), q) = mallocsize(h, q)

This function will be used in the axioms for accessible below.

3 For all axiom groups stated below, it would also be possible to add further, more complex “axioms” that can be derived from the
stated axioms (e.g., p 6= q ∧ contained(p, s, q, 1) ⇒ freeable(malloc(h, p, s), q) ⇔ ⊥, which states that a free operation
with an address “in the middle” of an allocated block is not valid). How these derived “axioms” affect the runtime of the
implementation will be investigated in future work.

Axioms for accessible. Finally, we present the axioms for accessible. Recall that accessible(h, p, s) deter-
mines whether the region [p, p+ s) is completely contained within an allocated memory region.

accessible(ε, p, s)⇔ ⊥
mallocable(h, p, s) ∧ contained(p, s, q, t) ⇒ accessible(malloc(h, p, s), q, t)⇔ >

¬(mallocable(h, p, s) ∧ contained(p, s, q, t)) ⇒ accessible(malloc(h, p, s), q, t)

⇔ accessible(h, q, t)

¬freeable(h, p) ⇒ accessible(free(h, p), q, t)

⇔ accessible(h, q, t)

freeable(h, p) ∧ disjoint(p,mallocsize(h, p), q, t) ⇒ accessible(free(h, p), q, t)

⇔ accessible(h, q, t)

freeable(h, p) ∧ ¬disjoint(p,mallocsize(h, p), q, t) ⇒ accessible(free(h, p), q, t)⇔ ⊥

4 A Generalized Version of mallocable

Figure 1 contains refined axioms for mallocable. Here, mallocablefit(h, p, s) is true iff [p, p + s) is disjoint
from all currently allocated memory regions. The most complex axioms are the mallocable-over-free axioms
(1)–(3) that are concerned with partial overlaps of a freed memory region with a memory region whose
mallocability is to be determined. The different possible overlap situations are depicted in Fig. 1. Then,
mallocable itself is defined by

mallocable(h, p, s) := mallocablesize(h, p, s) ∧mallocablefit(h, p, s)

5 Extensions of the Theory

In order to be able to use the memory model for the verification of C programs, some peculiarities of the
C programming language have to be taken into account. This is mostly related to the special role of NULL-
pointers in C.

malloc(h, 0, s): The malloc-function may return NULL to indicate that the memory allocation could not
be performed, for example because of an out-of-memory situation. Notice that the heap allocation state
is not altered in this situation. To take this into account, mallocable can be replaced by mallocable′,
which is defined by

mallocable′(h, p, s) := (p 6= 0) ∧mallocable(h, p, s)

Furthermore, heaptop(ε) needs to be changed to a non-zero constant.
free(h, 0): Passing NULL to free is explicitly allowed in the C standard, but is specified to have no effect.

To take this into account, freeable′, defined by

freeable′(h, p) := (p = 0) ∨ freeable(h, p)

can be used instead of freeable for checking the correctness of free operations.

m
al
lo
ca
b
le

fi
t(
ε,
p
,s
)
⇔
>

m
al
lo
ca
b
le

fi
t(
h
,p
,s
)
∧
¬
d
is
jo
in
t(
p
,s
,q
,t
)
⇒

m
al
lo
ca
b
le

fi
t(
m
al
lo
c(
h
,p
,s
),
q,
t)
⇔
⊥

¬
(m

al
lo
ca
b
le

fi
t(
h
,p
,s
)
∧
¬
d
is
jo
in
t(
p
,s
,q
,t
))
⇒

m
al
lo
ca
b
le

fi
t(
m
al
lo
c(
h
,p
,s
),
q,
t)
⇔

m
al
lo
ca
b
le

fi
t(
h
,q
,t
)

¬
fr
ee
ab

le
(h
,p
)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔
>

fr
ee
ab

le
(h
,p
)
∧
co
n
ta
in
ed
(p
,m

al
lo
cs
iz
e(
h
,p
),
q,
t)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔
>

fr
ee
ab

le
(h
,p
)
∧
d
is
jo
in
t(
p
,m

al
lo
cs
iz
e(
h
,p
),
q,
t)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔

m
al
lo
ca
b
le

fi
t(
h
,q
,t
)

fr
ee
ab

le
(h
,p
)
∧
q
<

p
∧
q
+

t
>

p
∧
q
+

t
≤

p
+

m
al
lo
cs
iz
e(
h
,p
)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔

m
al
lo
ca
b
le

fi
t(
h
,q
,p
−

q)
(1

)

fr
ee
ab

le
(h
,p
)
∧
q
≥

p
∧
q
<

p
+

m
al
lo
cs
iz
e(
h
,p
)
∧
q
+

t
>

p
+

m
al
lo
cs
iz
e(
h
,p
)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔

m
al
lo
ca
b
le

fi
t(
h
,p

+
m
al
lo
cs
iz
e(
h
,p
),

q
+

t
−

(p
+

m
al
lo
cs
iz
e(
h
,p
))
)

(2
)

fr
ee
ab

le
(h
,p
)
∧
q
<

p
∧
q
+

t
>

p
+

m
al
lo
cs
iz
e(
h
,p
)
⇒

m
al
lo
ca
b
le

fi
t(
fr
ee
(h
,p
),
q,
t)
⇔

m
al
lo
ca
b
le

fi
t(
h
,q
,p
−

q)
∧

m
al
lo
ca
b
le

fi
t(
h
,p

+
m
al
lo
cs
iz
e(
h
,p
),

q
+

t
−

(p
+

m
al
lo
cs
iz
e(
h
,p
))
)

(3
)

(a
)

A
xi

om
s

q
q
+

t
−

1

p
p
+

m
al
lo
cs
iz
e(
h
,p
)
−

1

(b
)

Il
lu

st
ra

tio
n

fo
ra

xi
om

(1
)

q
q
+

t
−

1

p
p
+

m
al
lo
cs
iz
e(
h
,p
)
−

1

(c
)

Il
lu

st
ra

tio
n

fo
ra

xi
om

(2
)

q
q
+

t
−

1

p
p
+

m
al
lo
cs
iz
e(
h
,p
)
−

1

(d
)

Il
lu

st
ra

tio
n

fo
ra

xi
om

(3
)

Fi
g.

1.
A

xi
om

s
an

d
ill

us
tr

at
io

ns
fo

rm
al
lo
ca
b
le

fi
t.

6 Implementation

We have implemented TH in our software bounded model checking tool LLBMC as an alternative to the
combined theory approach presented in [16]. Since current SMT solvers do not support TH (yet?), we
apply the axioms in a pre-processing step before passing the resulting formula to an SMT solver. This
pre-processing is done similarly to the case of TA as discussed in Section 2:

1. The equalities or logical equivalences in the axioms are oriented from left to right, turning them into
conditional rewrite rules.

2. ITE-terms (possibly nested) are used in order to replace instances of left-hand sides by instances of
right-hand sides. In order to prevent a blow-up of the formula, newly created ITE-terms are immediately
simplified.

In LLBMC, mallocable and the corresponding axioms are not needed since suitable non-overlapping assump-
tions (see [16]) ensure that mallocable is always true.

Example 1. In this example we show that the formula

accessible(free(malloc(ε, x, 1), x), x, 1) (4)

is unsatisfiable using the above pre-processing and additional formula simplifications. Using the accessible-
over-free axioms and simplifications of the introduced disjoint-subformula, (4) is equivalent to

ITE(freeable(malloc(ε, x, 1), x),⊥, accessible(malloc(ε, x, 1), x, 1)) (5)

The freeable-over-malloc axioms imply that the predicate freeable(malloc(ε, x, 1), x) is equivalent to the
predicate ITE(mallocable(ε, x, 1),>, freeable(ε, x)). Next, the subformula mallocable(ε, x, 1) is simplified
to >. Thus, (5) is equivalent to

ITE(ITE(>,>, freeable(ε, x)),⊥, accessible(malloc(ε, x, 1), x, 1)) (6)

Using ITE-simplifications, (6) is simplified to ⊥, thus showing unsatisfiability of the original formula. ♦

7 Evaluation

We have evaluated LLBMC using the implementation of TH as described in Section 6 and the implementation
of the approach from [16]. In [16], the TH predicates accessible, freeable, and mallocable are used as well.
In contrast to TH, however, the encoding of accessible(h, p, s) iterates over all mallocs that took place when
obtaining the heap state h and have not been deallocated since then. accessible(h, p, s) is then encoded as
a disjunction over these mallocs, where each disjunct checks whether the access operation falls within the
memory block that is allocated by the malloc.

The evaluation has been performed on a collection of 97 small to medium-sized C programs from various
sources. The largest part of the evaluated benchmarks was selected from the NEC Laboratories America
benchmark suite4, the Run Time Error Detection Test Suites5, and the WCET benchmark selection6. Of
these, only those benchmarks using dynamic heap memory allocation were included.

After unrolling of loops and inlinng of function calls, an average of 95.32 memory allocations per
benchmark remained. The benchmark with the largest number of memory allocations was an algorithm for
the flattening of a tree datastructure. This benchmark contained a total of 6930 memory allocations.

4 Available at http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
5 Available at http://rted.public.iastate.edu/
6 Available at http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Example 2. The following (artificial) example illustrates the difference between TH and [16].
1 int main()
2 {
3 int i;
4 int ∗p = NULL;
5

6 for (i = 0; i < N; ++i) {
7 p = malloc(4 ∗ sizeof(int));
8 }
9

10 return ∗(p + 3);
11 }

Using TH, the validity of the memory access operation in line 10 can easily be established by considering the
last malloc in the heap state history. Using the approach from [16], on the other hand, builds a disjunction
of N accessible predicates, one for each malloc in the loop. ♦

 1

 10

 100

 1 10 100

 L
LB

M
C

 w
ith

ou
t T

H

 LLBMC with TH

wall-clock time (in seconds)

 10

 100

 1000

 10 100 1000

 L
LB

M
C

 w
ith

ou
t T

H

 LLBMC with TH

memory consumption (in MB)

Fig. 2. Scatter plots of the run-time and memory consumption of LLBMC comparing the implementation of TH (x-axis) to the
implementation following [16] (y-axis).

Scatter plots of the results are given in Fig. 2. The run-times of TH and [16] are roughly comparable.
The same is true for memory consumption, but TH has a significantly lower ionsumption than [16] in certain
cases. Table 1 contains a detailed comparison for selected benchmarks.

8 Related Work

Several low-level memory models7 for C-like languages have been proposed in the past ([1, 2, 6, 7, 11–14,
17, 18]). However, they do not emphasize memory protection or ignore it completely.

7 In a low-level memory model the memory is not much more than an array of bytes and suitable disjointness or consistency
conditions are stated explicitly.

benchmark #mallocs/ #accessible time memory
name #frees SSV TH SSV TH
sparsemem 129/51 8374 76.2 49.5 861 404
plenty-of-mallocs 333/0 2 2.0 0.7 154 7
binary-tree 127/127 3048 7.5 9.1 150 94
flatten-trees 6930/0 42420 29.8 26.9 854 261
inplace-reverse 100/100 1800 20.4 10.8 260 119
wcet-bsort100 3/0 120204 12.4 12.1 246 246
wcet-statemate 106/0 2816 2.2 0.9 35 9

Table 1. Comparison of local (TH) and global (SSV, see[16]) memory access formalizations on selected benchmarks. Reported
times are wall-clock times in seconds; memory consumption is given in MBs.

Tuch at al. [18, 17] discuss a typed memory model in the context of interactive theorem proving with
the proof assistant Isabelle/HOL. It is shown that this typed memory model is sound with respect to the
untyped memory model assumed by C.

The memory model presented by Leroy and Blazy [13] is similar to our model and considers read, write,
malloc, and free operations. While the disjointness of memory blocks allocated by separate mallocs is guar-
anteed, no such separation for accesses performed within the same memory block is ensured (e.g., accesses
to different members of a structure). Leroy and Blazy prove properties of their memory model using the
proof assistant Coq (such as semantic preservation of compiler passes). Cohen et al. [7] introduce a typed
memory model similar to [18] for a C-like toy programming language and show that this typed memory
model is sound with respect to the untyped memory model assumed by C. They support pointer arithmetic
and memory access (read and write operations) at arbitrary locations in the memory, but do not consider
memory protection (malloc and free operations). Mehta and Nipkow [14] present a mechanism to reason
about pointer-based programs. Gast [11] gives a formalism for reasoning about memory layouts of C pro-
grams. In both cases, proof obligations are formulated in Hoare logic and verified using Isabelle/HOL.
The memory model used in Havoc is presented in [6]. Havoc uses a reachability predicate based on the
memory model in order to reason about heap-based data structures, but does not support memory protection.

Böhme and Moskal describe several typed heap encodings used by VCC2 and VCC3. A memory model
that is suitable for verification using separation logic is presented in [2], while a separation-based approach
for deductive verification in Caduceus is given in [12]. Neither paper considers memory protection.

KLEE [5], a symbolic execution engine developed by Cadar et al., shares the use of LLVM’s interme-
diate representation with our tool. KLEE uses an untyped, segmented memory model, where each object is
represented by a separate array in the SMT solver STP [10]. How memory access correctness is modeled
is not explicitly mentioned, though. CUTE [15] is a tool that combines symbolic and concrete execution
in an approach called concolic testing. Their memory model uses fixed addresses for memory objects plus
a global variable to store the next free address available for allocation. From what is published, it is not
clear how they handle memory allocation. In general, symbolic execution requires techniques similar to the
ones presented here. E.g., accessing an array of pointers at a “symbolic index” requires some kind of case
distinction.

9 Conclusions and Future Work

We have presented TH, a theory of heap memory allocation, that closely matches the semantics of malloc
and free in C. Furthermore, we have shown how the theory’s axioms can be applied as conditional

rewrite rules to reduce a problem from TH to a problem that can be solved by current SMT solvers such
as Boolector [3] or Z3 [8].

An Evaluation in the software bounded model checking tool LLBMC shows that even though application
of TH eliminates the disadvantages of the approach presented in [16] by applying local simplifications to the
formula, it does not impose a performance penalty in comparison to that approach.

As future work based on the results presented in this paper, we intend to combine spatially related
accessible statements and hope to be able to reduce size and complexity of the generated SMT formula this
way. Furthermore, we are planning to develop an approach based on lemmas-on-demand [9, 4] for solving
TH formulas. A further possibility is to use SMT solvers that support quantified axioms (such as Z3 [8]).

In the long term, we hope to be able to use the work presented in this paper as groundwork for a
more modular software bounded model checking approach. For this, we intend to translate each function
separately into our intermediate logic representation and apply syntactic and semantic rewriting on these
functions. Only after this simplification has been performed, the final formula is created and passed on to
the SMT solver. TH represents an important step towards this goal.

References

1. Sascha Böhme and Michał Moskal. Heaps and data structures: A challenge for automated provers. In Proc. CADE 2011, 2011.
To appear.

2. Matko Botincan, Matthew Parkinson, and Wolfram Schulte. Separation logic verification of C programs with an SMT solver.
ENTCS, 254:5–23, 2009.

3. Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver for bit-vectors and arrays. In Proc. TACAS 2009,
volume 5505 of LNCS, pages 174–177, 2009.

4. Robert Brummayer and Armin Biere. Lemmas on demand for the extensional theory of arrays. JSAT, 6:165–201, 2009.
5. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and automatic generation of high-coverage tests for

complex systems programs. In Proc. OSDI 2008, pages 209–224, 2008.
6. Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamarić. A low-level memory model and an accom-

panying reachability predicate. STTT, 11(2):105–116, 2009.
7. Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte. A precise yet efficient memory model for C. ENTCS,

254:85–103, 2009.
8. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. TACAS 2008, volume 4963 of LNCS, pages

337–340, 2008.
9. Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers. In Proc. SAT 2002, 2002.

10. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Proc. CAV 2007, volume 4590 of LNCS,
pages 519–531, 2007.

11. Holger Gast. Reasoning about memory layouts. In Proc. FM 2009, volume 5850 of LNCS, pages 628–643, 2009.
12. Thierry Hubert and Claude Marché. Separation analysis for deductive verification. In Proc. HAV 2007, pages 81–93, 2007.
13. Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model and its uses for verifying program transfor-

mations. JAR, 41(1):1–31, 2008.
14. Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic. IC, 199(1–2):200–227, 2005.
15. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C. In Proc. FSE 2005, pages 263–272,

2005.
16. Carsten Sinz, Stephan Falke, and Florian Merz. A precise memory model for low-level bounded model checking. In Proc. SSV

2010, 2010.
17. Harvey Tuch. Formal verification of C systems code: Structured types, separation logic and theorem proving. JAR, 42(2–

4):125–187, 2009.
18. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Proc. POPL 2007, pages 97–108,

2007.

