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Abstract. We present LLBMC, a bounded model checker for C programs.
LLBMC uses the LLVM compiler framework in order to translate C pro-
grams into LLVM’s intermediate representation (IR). The resulting code
is then converted into a logical representation and simplified using rewrite
rules. The simplified formula is finally passed to an SMT solver. In con-
trast to many other tools, LLBMC uses a flat, bit-precise memory model.
It can thus precisely model, e.g., memory-based re-interpret casts.

1 Verification Approach

Bounded model checking (BMC) has proven to be a very successful technique
in hardware verification. More recently, it has also been applied for verifying
software written in C [1, 4]. Applying BMC for verifying C programs, however,
comes with many obstacles that have to be tackled. One of the most important
differences is that the syntax and semantics of a programming language like C
is much more complicated than a hardware description. One has to deal, e.g.,
with memory allocation and de-allocation, (function) pointers, complex data
structures, and function calls.

LLBMC uses an approach which, instead of exploring the source code directly,
makes use of existing compiler technology and performs the analysis on a com-
piler intermediate representation. Such an intermediate representation offers a
much simpler syntax and semantics than a programming language like C, and
thus eases a logical encoding of the verification problem considerably.

We have chosen the LLVM [5] compiler infrastructure and its assembler-
like intermediate representation as the starting point for our approach, but the
idea can also be applied to other low-level languages. LLVM is both a (GCC-
compatible) C/C++/Objective-C compiler and a library of compiler technologies,
providing, e.g., source- and target-independent optimizations.

Our primary goal is to detect memory errors in C code [7, 2, 6]. Memory
errors include invalid memory accesses, heap and stack buffer overflows, and
invalid frees (e.g., double frees).
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2 Software Architecture

While LLBMC is designed for C programs, its input format is LLVM-IR, the inter-
mediate representation of the LLVM compiler framework. LLVM-IR is an abstract
assembler language that is programming-language-independent. This makes it
easier to extend LLBMC to other languages supported by LLVM (like C++ or
Objective-C). Furthermore, the challenges in parsing complex high-level language
syntax, such as C++, are eliminated. Instead, only a limited instruction set needs
to be supported. LLVM-IR is architecture-dependent in the sense that the com-
piler frontend selects, e.g., the bitwidth of pointers and integer data types.

After reading in the LLVM-IR code, LLBMC applies a number of transforma-
tions to it. In particular, loops are unrolled, functions are inlined, and the control
flow graph is simplified. The transformed code is then converted to ILR, which
is a representation of a program in the logic of bit-vectors and arrays plus some
extensions, related to memory allocation. ILR provides an explicit state object
for the memory content as well as for the state of the memory allocation sys-
tem. These state objects encode the dependencies between memory accessing
instructions in the ILR formula. Because of this, dependencies between instruc-
tions in LLVM, which were implicitly given by the ordering of the read and write
operations are made explicit in the ILR formula. This change makes the expres-
sions in an ILR formula ordering-independent. The ILR formula is then simplified
using rewrite rules, and memory access correctness expressions are reduced to
bit-vector formulas (see [2, 7] for details). If no more rewrite rules can be applied,
the formula is passed to the SMT solver STP [3].

3 Strengths and Weaknesses of the Approach

LLBMC is tailored towards finding bugs in C programs, especially memory-related
ones (not so much towards proving their absence). Detectable errors include:

– arithmetic overflow and underflow, including shift overflow,
– invalid memory access operations,
– invalid memory allocation, including invalid frees, and
– overlapping memory regions in memcpy.

Furthermore, LLBMC supports checking of user assertions and reachability
of labels named “ERROR” in the C-code. It can also detect whether the loop
unrolling and function inlining bound was sufficient or has to be increased in
order to achieve full coverage.

In the competition, LLBMC was used with a fixed unwinding bound of 7 and an
automatically determined function inlining bound. It was not checked whether
the unwinding bound is sufficient, but only whether the “ERROR” label was reach-
able within these bounds (as other comparable tools have chosen similar set-
tings). If no error was found, the instance was considered safe. LLBMC was able
to successfully handle 146 out of 269 benchmark instances (not participating
in category “Concurrency”, as this is not supported by LLBMC), resulting in a
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first place in category “Device Drivers” and a second place in category “Heap
Manipulation”. Among the unsolved instances, 65 were due to time-outs, and 48
due to current restrictions of LLBMC (e.g., related to memcpy or inline assembly).
LLBMC produced 7 false positives and 3 false negatives. The false negatives (i.e.
where an error was missed) were due to an insufficient loop unrolling bound.
Among the 7 false positives, one was due to an error in LLBMC related to detect-
ing a malloc function. The other 6 were due to uninitialized pointer variables,
by which other (e.g., global) variables could be overwritten and thus be mod-
ified, resulting in the “ERROR” label becoming reachable. We do not consider
these errors as “false positives”, but see here a special strength of LLBMC and its
precise memory model, as such errors are very hard to detect and, in practice,
result in non-deterministic program behavior.

4 Tool Setup and Configuration

The version of LLBMC (0.9) submitted to TACAS can be downloaded from

http://llbmc.org/llbmc-tacas12.zip.

LLBMC requires llvm-gcc (version 2.9) in order to convert C input files to LLVM’s
intermediate representation. For instructions on how to use LLBMC, just enter
llbmc --help. The ZIP archive also contains two wrapper shell scripts to run
LLBMC on individual C files. The first, llbmcc, iteratively increases the loop
unwind bound and also checks whether the unwind bound is sufficient. The
second, llbmcc2, which was used in the competition, also increases the unwind
bound, but only up to a maximal value of 7, and does not perform unwind bound
checks. Both shell scripts compile the C program, run LLBMC, and perform only a
reachability check for a basic block labelled “ERROR”, but no other checks, such
as for invalid memory accesses. They output either SAFE, if the error label is
unreachable (within the given bound for llbmcc2), or UNSAFE otherwise.

Further information on LLBMC is available on the web at http://llbmc.org.
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