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Abstract. Bounded model checking (BMC) of C and C++ programs
is challenging due to the complex and intricate syntax and semantics
of these programming languages. The BMC tool LLBMC presented in this
paper thus uses the LLVM compiler framework in order to translate C and
C++ programs into LLVM’s intermediate representation. The resulting
code is then converted into a logical representation and simplified using
rewrite rules. The simplified formula is finally passed to an SMT solver.
In contrast to many other tools, LLBMC uses a flat, bit-precise memory
model. It can thus precisely model, e.g., memory-based re-interpret casts
as used in C and static/dynamic casts as used in C++. An empirical
evaluation shows that LLBMC compares favorably to the related BMC
tools CBMC and ESBMC.

1 Introduction

Bounded model checking (BMC) [3], introduced by Biere et al. in 1999, is a pop-
ular technique for bug finding and verification of hardware designs that is widely
used in an industrial setting. For bug finding of software, BMC of C programs
was introduced by Clarke et al. in 2004 [8], and has shown its strength in check-
ing a variety of aspects of embedded and low-level system software (see, e.g.,
[16,23]). Tools implementing BMC for C programs include CBMC [8] (developed
by D. Kroning et al.), F-Soft [15] (developed at NEC Laboratories America),
SMT-CBMC [1] (developed by A. Armando et al.), and ESBMC [10] (developed by
L. Cordeiro et al.).

To build a BMC tool that supports all language features of a high-level lan-
guage like C or C++ reliably, including common non-standard extensions that
are used by, e.g., the GCC compiler, is a daunting task. This is mostly due
to the complex syntax and intricate, sometimes ambiguous, semantics of these
languages. The bounded model checker LLBMC presented in this paper there-
fore performs BMC not on the source code level but on the level of a compiler
intermediate representation (IR). This approach offers a range of advantages:

* This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.



— The compiler IR possesses a much simpler syntax and semantics than C/C++
and thus eases a logical encoding considerably. Furthermore, most features
of C and C++ can be supported without much effort.t

— The program that is analyzed is much closer to the program that is ac-
tually executed on the computer since ambiguities of C/C++’s semantics
have already been resolved. Furthermore, it becomes possible to find bugs
introduced by the compiler.

— In producing the IR, compilers already use program optimizations that can
also result in simplified BMC problems.

— The use of a compiler IR makes it possible to perform BMC on programs
written in a variety of programming languages.

The use of an IR makes LLBMC, to the best of our knowledge, the only BMC tool
that can be successfully applied to non-trivial C++ programs (CBMC contains
rudimentary support for C++ but failed to analyze nearly all of the over 50
C++ programs we tried it on). A drawback of using an IR is that bugs that are
(intuitively) present in the C/C4++ program may be “optimized away” by the
compiler (but notice that the bugs would then also not occur during execution
of the program if the same compiler is used to produce the executable).
Besides using a compiler IR, LLBMC offers the following key features:

Large set of built-in checks: LLBMC provides a comprehensive set of built-in
checks which are described in detail in Sect. 2.

Extensive simplification: LLBMC uses simplification techniques on different
levels. First, using the optimizations of the compiler front-end generates
smaller and simpler IR programs. In particular, memory-related compiler
optimization techniques (e.g., moving memory operations to registers when-
ever possible) can simplify the BMC problem significantly. Second, rewriting
techniques are used on the logical representation, e.g., to propagate constants
or to simplify arithmetical and Boolean expressions.

Memory is modeled as a flat byte-array: This design decision is in con-
trast to what is implemented in many other tools (e.g., pre-3.9 versions of
CBMC [8] or deductive verification tools such as VCC [9]) which use a typed
memory model. In a typed memory model, memory is a collection of typed
objects rather than a sequence of bytes. Using a byte-array makes it possi-
ble to support programs which make use of C’s weak type system, e.g., by
converting an int to a sequence of chars that are written to a file. Another
example is the use of a union for the conversion between types. Typically,
modeling memory on the byte level causes a performance penalty in BMC,
but LLBMC uses simplification techniques that, according to an empirical
evaluation, compensate for this.

Section 2 recalls BMC of software and discusses the built-in checks of LLBMC.
The compiler framework LLVM is briefly introduced in Sect. 3, while Sect. 4
and 5 give details on LLBMC’s approach. An empirical evaluation is presented in
Sect. 6. Section 7 discusses related work and Sect. 8 concludes.

! Currently, LLBMC does not support floating-point numbers, exception handling and
run-time type information (RTTI).



2 BMC and LLBMC’s Built-In Checks

Software inherently deals with unbounded data structures such as linked lists
or trees. This may give rise to infinite program runs and property checking
of such programs is in general undecidable. For bug finding, BMC thus limits
all program runs to finite ones, thereby achieving decidability. The bound is
imposed by restricting the number of nested function calls and loop iterations
that are considered. BMC performs function inlining and loop unrolling (up to
these bounds), resulting in one large function that is then subject to further
analysis.

LLBMC has an extensive set of built-in checks for commonly occurring bugs
in C programs. Furthermore, user defined checks (specified via C’s assert func-
tion) are supported as well. Each of these checks can be enabled or disabled
independently, but most of them are enabled by default.

Arithmetic overflow and underflow: Arithmetic overflow? occurs when the
result of a signed or unsigned arithmetic operation cannot be represented
with the available number of bits. While the semantics of unsigned integer
overflows is well-defined by the C standard using modular arithmetic, this
is not true for their signed counterparts. The semantics of signed integer
overflows are intentionally under-specified in the standard to give different
implementations room for optimizations. Thus, any signed arithmetic over-
flow in a program may give rise to undefined behavior and LLBMC checks for
them by default. Checks for unsigned arithmetic overflows are enabled only
if requested.

Logic or arithmetic shift exceeding the bit-width: While most program-
mers are familiar with arithmetic overflows, shift operations are a less well-
known cause for undefined behavior. The C standard leaves shift operations
like n << [ undefined if  is larger than or equal to the bit-width of n.3 LLBMC
supports checks for this kind of error by default since this behavior is not
expected by most programmers.

Memory access at invalid addresses: One of the most important classes of
errors is caused by invalid memory access operations. The prime example of
this are security-critical buffer overflows. An access operation for an object on
the heap is only valid if it is completely contained within a block of memory
which was previously allocated using malloc. Due to C’s unrestricted pointer
arithmetic, invalid memory access operations are a frequent source of crashes
and vulnerabilities. LLBMC detects invalid memory accesses on the stack, on
the heap, and for global variables.

Invalid memory allocation: Heap memory allocations are considered invalid
by LLBMC if a memory block of the requested size can be allocated under no
circumstances. Currently, LLBMC approximates this by checking if the total
size of all allocated blocks would exceed the size of the heap.

2 In the following, “overflow” is used to denote both overflow and underflow.
3 On many architectures, shifting = by [ bits is equivalent to shifting # by ! mod b
bits, where b is the bit-width of z’s data type.



Invalid memory de-allocation: A call to free(p)/delete p is invalid if a
memory block starting at p was already de-allocated, was never allocated,
or if p points to an address which is not the first byte of an allocated memory
block. LLBMC checks whether either of these situations occurs.

Overlapping memory regions in memcpy: In C, memcpy is used to copy the
content of a block of memory from one location to another. The result is
undefined, though, if the source and destination blocks overlap. LLBMC checks
that this does not happen.

Memory leaks: Memory leaks occur when blocks of memory are allocated, but
never de-allocated. For long running programs this might cause an out-of-
memory situation. LLBMC checks for memory leaks as described in [26].

User defined assertions: In addition to the built-in assertions, LLBMC sup-
ports checking user defined properties expressed in C via C’s assert function
or the LLBMC-specific __11bmc_assert.* Assumptions can also be specified us-
ing the built-in function __11bmc_assume.

BMUC specific assertions: Finally, LLBMC is able to automatically detect in-
sufficient bounds for nested function calls and loop iterations that cause
BMC to be incomplete since not all programs executions are considered in
these cases.

3 LLVM

LLBMC uses the LLVM compiler framework (versions from 2.7 through 3.0) and its
intermediate representation LLVM-IR [18]. This makes it possible to use LLBMC
on programs that are written in several programming languages, since compiler
front-ends for, amongst others, C and C++, are available. The main target of
LLBMC is bounded model checking of C programs, but C4++ programs that do not
use exception handling or run-time type information (RTTT) are also supported.

LLVM’s intermediate representation is an abstract, RISC-like assembler lan-
guage for a register machine with an unbounded number of registers. A program
in LLVM-IR consists of type definitions, global variable declarations, and the
program itself, which is represented as a set of functions, each consisting of a
graph of basic blocks. Each basic block in turn is a list of instructions, where
the instruction set can broadly be split into six types:

Three-address-code (TAC) instructions working on registers or constants.
The memory access instructions load and store.

Address calculations using getelementptr.

Conditional and unconditional branch instructions, phi instructions.
Function call instructions.

Bit-level instructions like extensions, truncations, and type casts.

BNl ol

Here, (conditional and unconditional) branch instructions are only allowed as the
last instruction of a basic block. The branch instructions between basic blocks

4 _1lbmc_assert is used only for specification purposes and not checked at runtime.



induce a basic block graph, in which edges are annotated with the condition under
which the transition between the two basic blocks is taken.

Programs in LLVM-IR are in static single assignment (SSA) form, i.e., each
(scalar) variable is assigned exactly once in the static program. Assignments
to scalar variables can thus be treated as logical equivalences. Due to its re-
stricted instruction set, the use of SSA form, and its low-level nature, converting
an LLVM-IR program into a logical representation is considerably easier than
operating on the source code of a high-level programming language.

The simple C program given in Fig. 1 is used as a running example. This
program is converted into the LLVM-IR program also shown in Fig. 1 by the C
front-end 11vm-gcc (on a 32-bit architecture using the optimization level -02).
Notice that the low-level bit-field and union operations have been replaced by
word-level instructions by the front-end.

union U {
char c[4];
struct { int v: 31; int s: 1; } t;
int i;

5

void __llbmc_main(char n) {
union U *u; char xp; int i;
u = malloc(sizeof(union U));

P = u—>c¢;
u—>t.s = 1;
u—>t.v = 0;
p[0] = n;
_llbmc_assert(u—>i == INT_MIN);
}
define void @__llbmc_main(i8 %n) {
entry:
%0 = call i8« @malloc(i32 4) ; u = malloc(sizeof (
%1 = bitcast i8+ %0 to i32x ; union U));
store 132 —2147483648, i32% %1 ; u=>t.s = 1; u—>t.v = 0;
store i8 %n, i8x %0 ; plo]l = n;
%2 = load i32x %1 s u->i
%3 = icmp eq 132 %2, —2147483648 ; == INT_MIN ?

%4 = zext i1 %3 to 132
call void @_llbmc_assert(i32 %4)
ret void

Fig. 1. Example C program. It is converted into the given LLVM-IR program by the C
front-end 11vm-gcc. The function __11bmc_main is taken as the starting point for BMC.



4 The Approach of LLBMC

The overall approach of LLBMC is as follows: First, an LLVM compiler front-end
(such as clang or 1lvm-gcc) is used in order to convert a C program into an
LLVM-IR program. This LLVM-IR program is then converted into LLBMC’s internal
logical representation ILR. The ILR formula is simplified by LLBMC using rewrite
rules before being passed to an SMT solver. If the SMT solver finds a satisfying
assignment (corresponding to a bug in the program), this can be converted into
a counterexample, first on the ILR level and then on the LLVM-IR level. The
approach is summarized in Fig. 2.

****

e T )

Fig. 2. LLBMC’s approach.

4.1 From LLVM-IR to ILR

After parsing the LLVM-IR program, a number of transformations are applied to
it (e.g., loops are unrolled and functions are inlined a fixed number of times and
the control flow graph is simplified).> The transformed program is then converted
into ILR, which is a representation of a formula in the logic of bit-vectors and
arrays with some extensions that, e.g., handle the special semantics of memory
allocation instructions like malloc and free. This format closely follows LLVM’s
instruction set, but differs from LLVM-IR in that it provides an explicit state
object for the memory content as well as for the state of the memory allocation
system. These state objects encode the dependencies between memory access
instructions and malloc/free, respectively. With an explicit representation of
the memory state, dependencies between memory-related instructions in LLVM
(which were implicitly given by the ordering of the operations) are made explicit
in the ILR formula. This makes the expressions in ILR order-independent.

5 LLBMC accepts arbitrary LLVM-IR programs as input and does not depend on any
optimizations performed by the compiler. For efficiency reasons, LLBMC internally
runs LLVM’s mem2reg pass in order to promote stack memory to registers when
possible. Furthermore, the indvars pass is used in order to automatically determine
the (static) number of loop iterations for certain kinds of simple loops.



Translation of LLVM’s three-address-code, memory access, address calcula-
tion, and bit-level instructions is straightforward, since these instructions are
part of the theory of bit-vectors and arrays—or can easily be encoded into it.

phi instructions are a common tool in compiler IRs that use SSA form. They
are used to select the correct value for a variable from a set of previous values
(e.g., when control flow merges after an if-then-else statement). In general, a
phi expression in ILR has the form

i’ = phi [i1,c1] ... [in, cn
where the value that the variable i’ takes is one of i1, ..., i,, depending on which
of the conditions cy,. .., ¢y is true. The conditions c¢; are mutually exclusive and

cover all possible cases, i.e., the value of i’ is always uniquely determined.

For SMT solvers, a phi expression can be translated into a sequence of ITE
(if-then-else) operators (written in C syntax below):
i/:cl ?’Ll : (CQ 722 : (~~~(Cn—1 ?in—l ’Ln)))

The conditions ¢; are not given explicitly on the LLVM-IR level, though.
Instead, basic blocks are used as designators. These basic blocks refer to the
immediate predecessor in the basic block graph from which the current basic
block has been reached. It thus becomes necessary to compute the conditions
¢;. This is accomplished as follows. An execution condition ceec(b) is associated
with each basic block b. Execution conditions can be calculated recursively. Let
P(b) denote the set of predecessors of b in the basic block graph, and let #(b,b")
be the condition under which the transition from basic block b to b’ is taken (the
edge label in the basic block graph). Then

Cexec(b) = \/ (CexeC(b/) A t(b/7 b))

b’ €P(b)

if P(b) # 0, and cCexec(b) = T otherwise. Then, the basic block o’ in a phi
instruction on the LLVM-IR level that occurs in the basic block b can be replaced
by the condition cexec(b’) A t(b',0) on the ILR level.

Notice that each cexec(b) requires only linear space in the number of predeces-
sors of the basic block b if the recursive definition is not expanded but encoded
by introducing new Boolean variables for each cexec(b) and ¢(b, ') instead.

4.2 Adding checks to the ILR formula

After the initial ILR formula has been generated, it is annotated with LLBMC’s
built-in checks. Most of these checks are supported by a predicate that is part
of ILR, e.g., there are no_overflow, valid_access, and valid_free predicates.
Then, an instruction that can possibly overflow is guarded by an assertion that
no overflow occurs, a memory access instruction is guarded by an assertion that
the access is valid, and so on.



After converting the LLVM-IR program from Fig. 1 into ILR and adding the
predicates for the built-in checks, the ILR formula shown in Fig. 3 is obtained.
Here, assertions are encoded in such a way that only the first error in the program
is reported.

i8 %n = nondef()

i8* %0 = nondef()

heap %1 = malloc(%initialHeap, %0, i32_4)
bool %2 = valid_malloc(%initialHeap, %0, i32_-4)
assert (%2, ”valid_malloc”)

i32x %3 = bitcast(%0)

mem %4 = store(%initialMemory, %3, 132_-2147483648)
bool %5 = valid_access(%1, %3, i32_4)

bool %6 = and(%2, %5)

bool %7 = not(%2)

bool %8 = or(%7, %6)

assert (%8, ” valid_store”)

mem %9 = store(%4, %0, %n)

bool %10 = valid_access(%1, %0, i32__1)

bool %11 = and(%6, %10)

bool %12 = not(%6)

bool %13 = or(%12, %11)

assert (%13, ” valid_store”)

i32 %14 = load(%9, %3)

bool %15 = valid_access(%1, %3, 132_4)

bool %16 = and(%11, %15)

bool %17 = not(%11)

bool %18 = or(%17, %16)

assert (valid_load , %18)

bool %19 = compare(EQ, %14, i32__2147483648)
bool %20 = and(%16, %19)

bool %21 = not(%16)

bool %22 = or(%21, %20)

assert (%22, ” custom” )

Fig. 3. ILR formula obtained for the LLVM-IR program from Fig. 1.

4.3 Simplification of the ILR formula

Similar to [25], LLBMC uses term rewriting in order to simplify the ILR formula
before passing it to an SMT solver (LLBMC uses Boolector [4] by default, but
also supports STP [13] and Z3 [22]). Most of the rewrite rules used by LLBMC
are rather simple and correspond to constant propagation or simple arithmetical
and logical properties. In total, approximately 150 (conditional) rewrite rules
have been implemented in LLBMC in order to simplify the ILR formula.



Before the ILR formula is passed to the SMT solver, ILR’s predicates for built-
in checks are expanded if they are not already supported by the SMT solver:

— Arithmetic overflow detection is supported by many current SMT solvers.
Otherwise, it can be encoded in bit-vector logic directly (see, e.g., [5]).

— Checks for logic and arithmetic shift exceeding the bit-width can easily be
encoded in bit-vector logic using suitable comparison expressions. The same
is true for invalid memory allocations (i.e., memory allocations that are “too
big”) and overlapping memory regions in memcpy.

— Invalid memory access, invalid free, and memory leak detection is more
complex. Their encoding is discussed in detail in Sect. 5.

After expanding the predicates for the built-in checks and rewrite-based sim-
plifications of the formula from Fig. 3, the formula shown in Fig. 4 is obtained.

i8 %n = nondef()

i8+ %0 = nondef()

132 %3 = bitcast(%0)

mem %4 = store(%initialMemory, %3, i32_-2147483648)
mem %9 = store(%4, %0, %n)

i32 %14 = load(%9, %3)

bool %19 = compare(EQ, %14, 132_2147483648)

assert (%19, ” custom”)

Fig. 4. ILR formula obtained by simplifying the ILR formula from Fig. 3.

4.4 Counterexample generation

The simplified ILR formula is then passed to an SMT solver for the logic of
bit-vectors and arrays. If the formula is satisfiable, any satisfying assignment
corresponds to a bug in the program. By mapping ILR variables to the corre-
sponding instructions in the LLVM-IR program and simulating execution with
these values, a trace of the LLVM-IR program that exhibits the bug can be ob-
tained. The bug exhibited by assigning —128 to n (and where malloc returns
the address 0x7ffffffc) in the running example is displayed in Fig. 5.

5 Encoding Memory Checks

In this section it is described how the memory-related check predicates are ex-
panded into formulas that can be handled by current SMT solvers. The following
discussion only considers the heap. Memory blocks on the heap are allocated us-
ing malloc and de-allocated using free. In ILR, these functions take the form

h' =malloc(h,p,s)



define void @_llbmc_main(i8 %n) { ; i8 %n = -128

entry: ; executed
%0 = call i8« @malloc(i32 4) ; Ox7TEfffffc
%1 = bitcast i8% %0 to i32x ; Ox7Tffffffc

store 132 —2147483648, i32x %1

; [0x7ffffffc] -> [0x00 0x00 0x00 0x80]
store i8 %n, i8x %0

; [ox7ffffffc] -> [0x80 0x00 0x00 0x80]

%2 = load i32% %1 ; —2147483520
%3 = icmp eq i32 %2, —2147483648 ; 0

%4 = zext i1l %3 to 132 5 ©

call void @__llbmc_assert(i32 %4) ; FAILED

Fig. 5. Error trace exhibiting a bug in the running example.

h' = free(h,p)

where h, h' are (explicit but abstract) heap allocation states, p is a pointer, and
s is the size (in bytes) of the memory block that is to be allocated by malloc.
Notice that malloc takes the pointer p as a parameter and does not provide
it as a return value. In the conversion from LLVM-IR to ILR, malloc is always
preceded by a new pointer variable declaration for p, and malloc intuitively
adds suitable constraints on this pointer. The heap allocation state h’ returned
by malloc can then be considered as having these constraints added. The free
function modifies the heap allocation state in such a way that the (currently
allocated) memory block starting at address p is de-allocated.

LLBMC supports two different encodings for the memory checks: a “global”
encoding (following [26]) and a “local” encoding (following [12]). In the global
encoding, the memory check predicates are expanded by taking the whole for-
mula into consideration at once. In contrast, the local approach is based on
conditional rewrite rules that only take the immediate arguments of the predi-
cates into account. As an example, the expansion of the valid-access predicate
is discussed below, the remaining memory-related check predicates are handled
similarly, see [26, 12] for details.

The valid-access predicate has the form

valid-access(h,p,s)

where h is a heap allocation state, p is a pointer, and s is the size (in bytes) of the
memory block that is to be accessed. The intended semantics of this predicate
is that it is true in exactly those cases where the memory region [p,p + ) is
contained within a memory block that is currently allocated in h.

The “global” encoding of valid-access is given below. The encoding of
valid-access(h,p, s) iterates over all mallocs that potentially took place when
obtaining the heap allocation state h. valid-access(h,p,s) is then true if a
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malloc that actually took place allocated a memory block that contains [p, p+s)
and if this memory block was not de-allocated since then.

valid-access(h,p,s) =

V (cocll) A g <p Apts<qtin -deallocated(h'.h.q))
h'<h
I: h'= malloc(h” ,q,t)

deallocated(h,h’,p) = \/ (cexec(l) A p:q)
h=h*=h’
I: h*= free(h” ,q)
Here, Cexec(I) is the execution condition of (the basic block containing the) in-
struction I. b/ < h means that h’ is a (direct or indirect) predecessor of h in the
history of heap allocation states.

The “local” encoding of valid-access is given in the following. It uses con-
ditional rewrite rules of the form C' | { — r, expressing that ¢ can be rewritten
to r if the condition C' can be evaluated to true. A memory access in the “empty”
heap allocation state ¢ is never valid (first rewrite rule). An access within an al-
located memory block is always valid (second rewrite rule), and, e.g., an access
that partially overlaps with a memory block that is getting de-allocated is never
valid (last rewrite rule).

contained(p, s,q,t) := p<q A g+t<p+s
disjoint(p,s,q,t) = p+s<q V ¢+t<p

valid-access(g,p,s)
contained(p, s, q,t) | valid-access(malloc(h,p,s),q,

—contained(p, s,q,t) | valid-access(malloc(h,p, s

— valld—access(

\./2“\./

—valid-free(h,p) | valid-access(free(h,

— valid- access( ,q,t

valid-free(h,p) A disjoint(p,bsize(h,p),q,t) | valid-access(free(h,p),q
— valid-access(h,q,t
valid-free(h,p) A ~disjoint(p, bsize(h,p),q,t) | valid-access(free(h,p),q
— L

Here, valid-free determines whether a free is valid, i.e., whether it changes
the heap allocation state. bsize determines the size of the (currently allocated)
memory block beginning at p. See [12] for details on their encodings.

6 Evaluation

In order to evaluate LLBMC’s performance, we compared it with two other BMC
tools: the C Bounded Model Checker CBMC [8] and the Efficient SMT-Based
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Context-Bounded Model Checker ESBMC 1.16 [10].° CBMC 3.9 contains significant
changes concerning the memory model since the typed memory model has been
replaced by a (mostly) byte-oriented model [17]. Since this new memory model
is less mature than CBMC’s typed memory model, we also included the previous
version of CBMC (3.8) in the comparison.

Benchmarks for the comparison were selected from a variety of papers and
sources in order to minimize any kind of bias. In total, 175 C programs were
included. The benchmark selection did not include any C+-+ programs since
ESBMC does not support C++ and CBMC’s C++ support is still very rudimentary.
We have, however, successfully used LLBMC on 57 C++ programs containing ad-
vanced features such as multiple inheritance, STL containers, and templates.”
All four examples presented in [21] and all benchmarks mentioned in [1] were
included in the evaluation. All of the benchmarks from the NEC Laboratories
America benchmark suite® were considered, but only those without infinite loops
were chosen (otherwise BMC is incomplete for all loop unrolling depths). A fam-
ily of four benchmarks implementing queues was constructed by us. Eight exam-
ples provided in SLAyer’s web interface® were included, as well as all examples
distributed with the Static Modular Assertion ChecKer SMACK'C [24], except for
those where non-trivial loop invariants were used (which are not supported by
either of the evaluated tools). Ten examples from the URBiVA distribution [20]
were added as well. Finally, two sets of worst-case execution time benchmark
suites were added to the selection of benchmarks: the SNU'! and the WCET!?
[14] suites. The complete benchmark collection and LLBMC itself are available at
http://baldur.iti.kit.edu/1lbmc/.

In order to compensate for different default settings, CBMC was run with
the options --bounds-check, --div-by-zero-check, --pointer-check, and
--overflow-check and ESBMC was run with the option --overflow-check.
Otherwise, CBMC and ESBMC where run with their default settings, in particu-
lar concerning the choice of SAT or SMT solvers. For LLBMC, the C programs
were converted to LLVM-IR using 11vm-gcc (version 2.8) with all compiler opti-
mizations switched off. Furthermore, LLBMC was configured to use Boolector as
its SMT solver. The loop unrolling and function inlining bounds were set to the
lowest possible values to detect a bug or show that no bug is present.

The evaluation was performed on an Intel® Core™ 2 Duo machine with
2.4GHz running Ubuntu Linux 11.04. For each benchmark, the memory limit
was set to 2.5GB and the time limit was set to 15 minutes. The results of the
comparison are shown in Table 1.

5 F-Soft [15] and SMT-CBMC [1] are not publicly available.

" For these C++ programs, CBMC 3.8 correctly solves nine programs, fails to handle
41 programs, and produces incorrect results for seven programs. For CBMC 3.9, the
numbers are four, 53, and zero, respectively.

8 http://www.nec-labs.com/research/system/systems_SAV-website/

9 http://rise4fun.com/SLAyer

10 http://www.zvonimir.info/projects/

" http://www.cprover.org/satabs/examples/SNU_Real_Time_Benchmarks/

2 http://www.mrtc.mdh.se/projects/wcet/benchmarks . html
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Benchmark LLBMC CBMC 3.8 CBMC 3.9 ESBMC 1.16
Family N| s|o|l F| 1| s|o|] ¥ 1 s|o|F 1 s|o|F 1
[21] 44 o o of 4[ o o of 2[ o 2[ of 1 1] 2[ 0
1] 32| 32| o] o o 28 4| o| o| 28/ 4/ o o| 31 o 1| 0
NECLA | 45| 44| o] o 1| 34| 4| 5| 2| 29| 2| 9| 5| 31| 4| 6| 4
Queue 4| 4| o] ol o 3] 1/ o o 3| 1] o o| 3] 1 o] 0
SLAyer 8| 8/ o] o of 5/ of o 3| 4 of o 4| 4] o 1| 3
SMACK 38| 38| o] o o 30/ 3| of 5| 16| o of 22| 31| o of 7
SNU 6| 6/ o o of 5/ of 1 o 5/ o 1/ o 6] ol o o
URBiVA 10| 10| o of of 9 of of 1| 5 of of 5| 4 1] 5 0
WCET 28|/ 26/ 1| o| 1| 27| 1| of of 27| 1| o] o| 26| 1| o 1
Total 175 172 1] 0 2[[ 145 13 6] 11][ 119] 8 12 36| 137] 8 15| 15
% 98.3(0.6/0.0[1.1|[82.9|7.4/3.4/6.3||68.0|4.6|6.9|20.6||78.3|4.6|8.6|8.6

Table 1. Results of the evaluation. “N” denotes the number of instances in a bench-
mark family. “S” denotes the number of successfully solved instances (correctly detected
bugs or absence of bugs proved), “O” the number of times the tool ran out of time or
memory, “F” the number of failures to handle the input program, and “I” the number
of incorrect results (i.e., the tool reports a non-existing “bug” or misses a bug).

Notice that LLBMC is able to successfully solve (i.e., find bugs in) over 18%
more benchmarks than the best other tool in the comparison. The evaluation,
however, contains two incorrect results reported by LLBMC:

— In the benchmark family WCET: in the benchmark containing Duff’s device
(duff.c), a loop is not recognized as such by LLVM. Because of this, LLBMC
incorrectly reports insufficient loop unrolling bounds.

— In the benchmark family NECLA: LLVM’s optimizations (even using the
compiler setting -00) cause information about signedness of an arithmetic
operation to be lost. LLBMC then does not check the operation for signed
arithmetic overflow and misses an overflow bug.

Notice that both CBMC and ESBMC have a significantly larger number of incorrect
results, i.e., report more non-existing “bugs” or miss bugs.

The cactus plot in Fig. 6 compares the run-times of the four tools. Bench-
marks that could not be handled or where an incorrect result was reported are
considered as time-outs. The plot clearly shows that LLBMC produces more cor-
rect results in a shorter amount of time than any of the competing tools. Also
notice the decrease in the number of correct results between CBMC 3.8 and 3.9.

7 Related Work

Bounded model checking of hardware was introduced by Biere et al. in 1999
[3] as an alternative to symbolic model checking using binary decision diagrams
(BDDs) [6]. In 2004 Clarke et al. were the first to describe the application of
BMC to software (more specifically, C programs) [8].
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Fig. 6. Cactus plot comparing LLBMC, CBMC 3.8, CBMC 3.9, and ESBMC.

Also in 2004, NEC Laboratories America implemented a bounded model
checking approach for C programs in the tool F-Soft as described in [15]. They
differentiate their tool from CBMC mainly through a basic block-based approach
instead of an SSA-based approach. Several static program analysis techniques
are performed on the control-flow graph in order to simplify the BMC problem.

In 2009, Armando et al. extended CBMC to use SMT solvers instead of encod-
ing the problem directly into SAT [1]. Results from that paper clearly show the
benefits of using SMT solvers w.r.t. formula size and execution time compared
to a direct SAT encoding as done by CBMC and F-Soft.

Recently, Cordeiro et al. presented ESBMC [10], which is based on CBMC but
uses an SMT solver instead of a SAT solver. The main novelty of ESBMC is its
added support for bug finding in multi-threaded software.

Milicevic and Kugler introduced an approach for model checking of software
based on SMT and the theory of lists [21]. While that approach avoids the
boundedness limitation of BMC, the evaluation in [21] indicates that it does not
scale comparably to BMC based approaches.

Symbolic execution is a different approach to bug detection in programs. In
contrast to BMC, which encodes all paths up to a bounded length in a single
formula, symbolic execution performs a symbolic path exploration that considers
the paths separately. The constraints obtained for each path are solved using SAT
or SMT solvers. Recent symbolic execution tools include KLEE [7] for C programs
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and KLOVER [19], which extends KLEE for C++ programs. Both KLEE and KLOVER
perform symbolic execution on the level of LLVM-IR.

A recent tool that combines features of symbolic execution and BMC is LAV
[27]. Like KLEE, KLOVER, and LLBMC, the tool LAV also operates on the level of
LLVM-IR programs.

Out of the numerous static checking programs, at least Calysto [2] and SMACK
[24] operate on the level of LLVM-IR as well.

For related work concerning memory models, we refer to [26,12].

8 Conclusions and Future Work

This paper has presented LLBMC, a tool for bounded model checking of C/C++
programs. LLBMC uses the LLVM compiler framework to translate C/C++ pro-
grams into LLVM’s intermediate representation. The resulting code is then con-
verted into a logical representation and simplified using rewrite rules. The sim-
plified formula is finally passed to an SMT solver. An empirical evaluation on
a large collection of C programs has shown that LLBMC compares favorably to
CBMC [8] and ESBMC [10], both in run-time and in number of found bugs. Further-
more, LLBMC has successfully been used on over 50 non-trivial C++ programs
containing advanced features such as multiple inheritance, STL containers, and
templates, making it (to the best of our knowledge) the first BMC tool that can
handle non-trivial C++ programs.

For future work, we are currently working on lifting the error trace of the
LLVM-IR program to an error trace of the C program by using debug informa-
tion generated by the compiler front-end. We are also planning to determine
(and iteratively adapt) loop unrolling and function inlining bounds automati-
cally: starting with low bounds for function inlining and loop unrolling, they are
gradually increased based on the results of previous runs of LLBMC. Since the
C++ support in LLBMC is currently preliminary and incomplete, we are planning
to extend the support for BMC of C++ programs. Similar to [19], support for
exception handling and run-time type information (RTTI) needs to be added to
LLBMC. Finally, LLBMC could be extended in the direction of software verification
(as opposed to bug finding) using k-induction, similar to how this was recently
done for CBMC [11].
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