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Abstract. The theory of arrays is widely used in program analysis, (de-
ductive) software verification, bounded model checking, and symbolic ex-
ecution to model arrays in programs or the computer’s main memory.
Nonetheless, the theory as introduced by McCarthy is not expressive
enough in many cases since it only supports array updates at single lo-
cations. In programs, memory is often modified at multiple locations
at once using functions such as memset or memcpy. Furthermore, initial-
ization loops that store loop-counter-dependent values in an array are
commonly used. This paper presents an extension of the theory of arrays
with A-terms which makes it possible to reason about such cases. We also
discuss how loops can be automatically summarized using such A-terms.

1 Introduction

The theory of arrays is widely used in formal methods such as program analysis,
(deductive) software verification, bounded model checking, or symbolic execu-
tion. In the most simple case, the computer’s main memory is modelled using
a one-dimensional array, but the use of the theory of arrays goes beyond such
flat memory models. Reasoning about arrays is thus an essential part of systems
that are based on the aforementioned methods.

Since the theory of arrays is quite basic, it is insufficient (or at least incon-
venient to use) in many application cases. While it supports storing and loading
of data at specific locations, it does not support the functionality provided by
C library functions such as memset or memcpy which operate on regions of loca-
tions. While these region-based operations can be broken down into operations
on single locations in some cases (e.g., a memcpy operation of size 10 can be
simulated using 10 read and 10 write operations), this approach does not scale if
the involved regions are large. Even worse, the sizes of the affected regions might
not be statically known, making it more complicated to break down region-based
operation into operations on single locations.

Apart from library functions, a further construct that often occurs in real-life
programs are initialization loops such as

1 for (i=0;i<n; ++i) {
2 afi] =2 1+ 1;
.}



which sets the array entry a[i] to the value 24+ 1 for all indices between 0 and
n — 1. Representing the array a after these initializations is not easily possible
in the theory of arrays if n is a large constant or not statically known.

In software bounded model checking tools such as CBMC [9] or ESBMC [11],
calls to memset and memcpy are handled by including an implementation of these
methods and unrolling the loop contained in the implementations. Due to this
unrolling, CBMC and ESBMC are incomplete in their treatment of memset and
memcpy if the number of loop iterations cannot be bounded by a constant.! Our
own software bounded model checking tool LLBMC [24] was equally incomplete
since it relied on user-provided implementations of memset and memcpy until we
implemented the approach discussed in the preliminary version of this work [14].

In this paper, we present an extension of the theory of arrays with A-terms
which makes it possible to reason about memset, memcpy, initialization loops
as discussed above, etc. We show that satisfiability of quantifier-free formulas
in this theory is decidable by presenting three reductions to decidable theories
supported by SMT solvers. An evaluation shows that using this new theory in
LLBMC outperforms the unrolling based approach as used in CBMC and ESBMC.

Ezxample 1. Consider the following program fragment:

1 int i j,n=.;

2 int *a = malloc(2 * n * sizeof(int));
3 for 1=0;i<n;++i) {

" ali] =i+ 1;

N

¢ for (j=mn;j<2=xn;++j) {

7 afj] =2 *j;

.}

Using the theory of arrays with A-terms, the array a after executing line 2 can be
described using a fresh constant as since nothing is known about the content of
the array. The array a after executing the loop in lines 3-5 can be described using
the A-term a5 = M. ITE(0 <4 < n, i+ 1, read(ag,i)) which represents the array
containing as entry a[i] the value ¢4 1 whenever 0 < i < n, and the original value
of a at index i (i.e., read(az,)) otherwise. Here, ITE is the if-then-else operator.
Similarly, the array a after executing the loop in lines 6-8 can be described using
the A-term ag = Aj. ITE(n < j < 2%n, 2%j, read(as, 7)), which could be simplified
to get af =Aj. ITE(n <j <2xm, 2x7, ITE(0 <j <mn, j+1, read(az,j))). ¢

A preliminary version of this work has appeared as an extended abstract in
[14]. This paper extends that preliminary version in two important directions:

— The previous version was restricted to memset and memcpy and did not sup-
port any other extension of the theory of arrays. As shown in this paper, the
use of A-terms makes it possible to simulate memset and memcpy, as well as
many kinds of initialization loops. Furthermore, we discuss how such loop
can be summarized automatically using A-terms.

! The situation is similar in symbolic execution tools such as EXE [8] or KLEE [7].



— While [14] discusses decidability of the extended theory of arrays, sound-
ness and correctness proofs were missing. In contrast, the aforementioned
reductions are formally shown to be sound and complete in this paper.

The present paper is structured as follows: Sect. 2 presents preliminaries and
fixes notation. Sect. 3 first recalls the theory T4 of arrays and then introduces
our generalization Ty 4. Several uses of T, 4, including loop summarization, are
discussed in Sect. 4. Reductions that establish the decidability of satisfiability
for quantifier-free T4 formulas are presented in Sect. 5. Sect. 6 describes the
implementation within LLBMC and contains the results of an evaluation of the
different reductions. Related work is surveyed in Sect. 7, while Sect. 8 concludes.

2 Preliminaries

In many-sorted logic, a signature L is a triple (%, ZF £F) where Z° is a set
of sorts, ZF" is a set of function symbols, and L is a set of predicate symbols.
Y-terms, Z-formulas, and Z-sentences are defined in the usual way.

We use the standard definition of a X-structure 9. It contains non-empty,
pairwise disjoint sets M, for every sort ¢ € £° and an interpretation of the
function symbols in ¥ and the predicate symbols in ZF that respects sorts
and arities. We use 9(f) to denote the interpretation of f € I in 9% and
OM(P) to denote the interpretation of P € £F in M. The interpretation of an
arbitrary term ¢ in 9 is denoted [t]™ and defined in the standard way. Similarly,
[]™ € {T, L} denotes the truth value of a formula ¢ in 9. Finally, a structure
M is a model of a formula ¢ if [@]™ = T.

A (first-order) Z-theory T is a set of Z-sentences, its axioms. An empty theory
is a theory not containing any axioms. A I-theory is single-sorted if |Z%| = 1.
For a single-sorted theory 7;, its only sort is usually denoted by o;.

Two signatures X1 and X are disjoint if F1 N Fy, = & and Py N Py, = O.
A Xi-theory 77 and a Xy-theory 75 are disjoint if £; and X, are disjoint. The
combined theory T ® Tz of two disjoint theories 77 and T3 is the (Z; UXs)-theory
containing the union of 7;’s and 73’s axioms. Theory combination of a theory
with itself is defined to be the same theory again: 71 & 71 = T1.

The symbol =, is implicitly defined for most sorts o. It is not part of any
signature £ and is always interpreted as the identity relation over ¢. For brevity,
its subscript is usually omitted.

If x,t1,to are terms, then ¢1[x/ts] stands for the term obtained from ¢; by
substituting all occurrences of x by t5. A substitution is applied to a formula by
applying it to all terms in the formula.

For two terms ti,to, writing t; < t5 indicates that the term ¢; can be
simulated by the term t5. This means that for any formula ¢ containing ¢y, the
formula @[t /ts] is equivalent to . Thus, t; can be rewritten to to.

For any formula 1\ and terms ¢1,t>; with the same sort o, the meta-symbol
ITE(, t1, t2) stands for an if-then-else expression. Conceptually, for any for-
mula @ containing the term ¢t = ITE(\, ¢1, t2), an equisatisfiable formula ¢’ not



containing ¢ can be constructed as follows. If the identity relation =, is available,
then @’ can be defined as

(P[t/tg,} AN (1]) — t3 = tl) AN (ﬁl]) = t3 = tg)
where t3 is a fresh constant. If =, is not available, then ¢’ can be defined as

W A ot/ta]) V (mb A o[t/t2])

Note that most SMT solvers natively support the ITE construct, i.e., ¢’ does
not need to be constructed up front.

3 The Theory Tha

The theory Ta4 is an extension of the non-extensional theory of arrays T4 that
was introduced by McCarthy in his seminal paper [23] in 1962. The theory
T4 is parameterized by the index theory Tz and the element theory Tg. Here,
both 77 and T¢ are single-sorted theories of sort o7 and o¢, respectively. Note
that 77 and 7¢ may coincide. In the most simple case, both o7 and og are
uninterpreted sorts and T¢ and 7z are both empty. In practice, 77 and T¢ are
often the theory of linear integer arithmetic (7zz4) or the theory of bit-vectors
(Tv). Ta now adds the sort o4 and function symbols read : 04 X 07 — o¢ and
write : o4 X 07 X 0g — 0.4 to the combination 77 ® 7¢. Due to non-extensionality,
=, is not available. Terms in T4 are built according to the following grammar,
where the detailed definitions of ¢z and ¢¢ depend on the theories 77 and Tg¢:

index terms tr = ...
element terms | tg = ... | read(t4,tz1)
array terms |ty = a | write(ta, tz,te)

Here, a stands for a constant of sort o4.

Objects of sort o4 denote arrays, i.e., maps from indices to elements. The
write function is used to store an element in an array, and the read function
is used to retrieve an element from an array. Formally, the semantics of these
functions is given by the following read-over-write axioms:?

p=r = read(write(a,p,v),r) = v (1)
—-(p=r) = read(write(a,p,v),r) = read(a,r) (2)

These axioms state that storing the value v into an array a at index p and
subsequently reading a’s value at index r results in the value v if the indices p
and r are identical. Otherwise, the write operation does not influence the result
of the read operation.

2 Here and in the following, all variables in axioms are implicitly universally quantified.
Also, variables a, b range over arrays, variables p, q,r, s range over indices, and the
variable v ranges over elements.



In a simple implementation of a decision procedure for 74 based on the re-
duction approach [20], the read-over-write axioms are applied from left to right
using the if-then-else operator ITE, i.e., a term read(write(a,p,v), q) is replaced
by ITE(p = ¢, v, read(a, q)). After this transformation has been applied exhaus-
tively, only read operations where the first argument is a constant remain. The
read symbol can then be treated as an uninterpreted function, and a decision
procedure for the combination 77 & T¢ @ Tgyr can be used, where Tgy 7 denotes
the theory of equality with uninterpreted functions.

Instead of this eager approach, modern SMT solvers use abstraction refine-
ment. For this, they apply techniques such as lazy axiom instantiation or lemmas-
on-demand (see, e.g., [5,15]) to efficiently support the theory of arrays.

The theory Th4 extends the theory of arrays by anonymous arrays that are
built using A-expressions, i.e., the term formation rules are extended as follows:

index terms tr n= ...
element terms | tg == ... | read(ta,t1)
array terms |ty = a | write(tq, tz,te) | M. tg

Here, the “” occurring in the A-expression Ai. tg is a bound variable of sort o7.
In 7a4, the bound variable ¢ may not occur below any further A-binder (i.e.,
each occurrence of i has De Bruijn index 1).3

Intuitively, Ai. s denotes the anonymous array that maps each index i to
the element denoted by the term s. Formally, this is captured by the following
read-over-A axiom scheme:

read(Ai. s,r) = s[i/7] (3)

Here, variables bound by A-terms within s are first suitably renamed in order to
be different from ¢. This axiom scheme is essentially the well-known (-reduction
from A-calculus.

Note that array terms of the form write(a, p,v) can be simulated using A-
terms as follows:

write(a, p,v) < Ai. ITE(i =p, v, read(a,i))

It is, however, advantageous to keep the write operation since this makes it
possible to reduce Ty 4 to T4 instead of the combination Tz & Te¢ @ Tgyr. Thus,
the efficient techniques employed by modern SMT solvers for 74 can be applied
(see Sect. 5 for details).

In [14], we have presented the theory Tasc, which generalizes T4 by intro-
ducing set, seto,, copy, and copy,, operations. In Tysc, the term formation rules
of T4 are extended as follows:

index terms |tz = ...

element terms | tg == ... | read(ta,t7)

array terms | tyq == a | write(ta, tz,te)

| set(ta,tz,te,tz) | setoo(ta,tz,te)

| copy(ta,tzr,ta,tz,tz) | copys(ta,tz,ta,tr)

3 This is not a restriction when modeling programs where an array at a given point
in the program does not depend on arrays at a later point in the program.



For Tasc, the index theory Tz needs to be a linear arithmetical theory contain-
ing +, —, <, and < (e.g., linear integer arithmetic or bit-vectors). Intuitively,
set(a, p, v, s) denotes the array obtained from a by setting the entries in the range
[p,p + s) to v and sety(a, p,v) denotes the array obtained from a by setting all
entries starting from p to v. Furthermore, copy(a, p, b, q, s) denotes the array ob-
tained from a by setting the entries in the range [p, p+ s) to the values contained
in b in the range [¢, ¢ + s) and copy(a,p,b, q¢) denotes the array obtained from
a by setting the entries starting from p to the values contained in b starting from
g. Formally, the semantics of the operations is given by the following axioms:*

p<r<p+s = read(set(a,p,v,s),r) =
“(p<r<p+s) = read(set(a,p,v,s),r)= read(a T)
r>p = read(sety(a,p,v),r) =
=(r>p) = read(sety(a,p,v),r) = read(a r)
p<r<p+s = read(copy(a,p,b,q,s),r)=read(b,q+ (r —p))
“(p<r<p+s) = read(copy(a,p,b,q,s),r)=read(a,r)
r>p = read(copy,(a,p,b,q),r) =read(b,q+ (r —p))
=(r>p) = read(copy.(a,p,b,q),r) = read(a,r)

Now it is easy to see that T4sc can be simulated within T 4:

set(a,p,v,8) — M. ITE(p<i<p+s, v, read(a,i))

seto(a,p,v) < M. ITE(i > p, v, read(a,i))
copy(a,p,b,q,8) — Ni. ITE(p<i<p+s, read(b,q+ (i —p)), read(a,i))
copyo(a,p,b,q) — Ni. ITE(i > p, read(b,q + (i — p)), read(a,?))

4 Applications of T4

As already noted in [14], the operations set and copy, and therefore also Tx4’s
A-terms, can be used to model the C standard library functions memset and
memcpy. Intuitively, this is done by summarizing the loops that implement these
functions, thereby modelling a simultaneous execution of all loop iterations.’

But the theory Tx4 goes beyond what is possible with Tys¢ in that it can
be used to summarize a wider range of loops than the particular loops in those
specific library functions.

4.1 Loop Summarization Using Th4

Broadly speaking, Ta4 can be used to summarize loops with data independent
loop iterations where consecutive loop iterations only write to consecutive array
positions. More precisely, loops need to satisfy the following requirements:

4 Similar formulas could be used as postconditions for memset and memcpy in deductive
verification tools such as VCC [10] and Frama-C [12].
® Because of this, copy’s semantics is actually closer to memmove than to memcpy.



— The loop does not contain nested loops.

— The induction variable is incremented by one in each iteration.

— For an array a declared outside the loop, each iteration of the loop uncondi-
tionally modifies only the ith element of a, where 7 is the induction variable.
All other variables declared outside the loop are not modified by the loop.
Any iteration of the loop may not use elements of a that have been modified
in earlier iterations of the loop.

In many cases, these requirements can be fulfilled by applying code transfor-
mations that are similar to standard compiler optimizations.

Ezxample 2. Consider the following program fragment implementing part of the
Sieve of Eratosthenes:

1 void filter_multiples(int p, int n)

2

3 for (int j = p+p; j <=n;j +=p) {
4 alj] = 0;

5 }

s}

The loop can easily be transformed into functionally equivalent code that
increments the induction variable by one, thereby making it A-summarizable:

1 void filter_multiples(int p, int n)
2
3 for (int j = p*p; j <= n; ++j) {
4 aljl = (G — p*p) % p==070:alj);
o}
Note that such transformations can be performed automatically. O

4.2 Further Uses

While this is already useful by itself, applicability of Tx4 goes beyond summa-
rization of loops and calls to memset and memcpy. Some applications that we
would like to explore in future work include the following;:

— Zero-initialization of global variables (as required by the C standard) can be
achieved using a A-term corresponding to a set operation.

— Zero-initialization of new memory pages before the operating system hands
them to a process can similarly be modelled using a A-term.

— If certain memory locations should be set to unconstrained values (havocked),
then this can be done using a A-term Ai. ITE(\(, read(h, i), read(a,i)), where
1 describes the memory locations that are to be havocked and h is a fresh
array constant. Similarly, memory-mapped I/O can be modelled.



— Tracking metadata for memory addresses. For instance, allocation informa-
tion can be modeled using an array containing information on the allocation
state of the locations. Memory allocation and memory de-allocation can then
be modelled using A-terms corresponding to a set operation. This makes it
possible to develop an alternative to the SMT theory of memory allocation
presented in [13] and to the memory model presented in [28].

5 Deciding Tha

In this section, we discuss several possibilities for deciding whether a quantifier-
free Th4 formula is satisfiable. All approaches work by a reduction to a theory
that is already supported by current SMT solvers.

In order to ease presentation, it is advantageous to represent formulas in
flattened form (similar to [27]). For this, a formula ¢ is represented using a pair
(Ag,ce), where Ay, is a list of definitions of the form

v=f(v,...,vn) c=Pvy,...,v)
v=A. s C=cyxCy for x € {A,V}
v =I1TE(e, vy, v2) c=-¢p

and ¢, is one of the ¢’s denoting the root proposition of the formula. Here, f is
a function symbol, P is a predicate symbol, v, vy,...,v,, s are constants, ¢, c1, co
are propositions, and each v and c is defined before it is used (we assume in
the following that adding definitions to a formula ensures that this property is
preserved). Constants occurring in the left-hand side of a definition need to be
fresh, uninterpreted constants. Thus, the v’s and ¢’s should be seen as names
for terms and formulas, respectively. We use v < w to denote that the definition
of w uses v (def-use-relation) and v <4 w to denote that v < w and v is of sort
o4. The transitive closures of < and <4 are denoted <t and {L respectively,
and <* denotes the reflexive-transitive closure of <. Note that a definition for
v such that v £#" ¢, can be deleted from Ay, (clean-up) without affecting the
satisfiability status of the formula.

Ezample 3. Consider the following Tysc formula (with 772 = Te = Tzza4):

read(write(copy . (copy, (a,0,a,1),1, copy,,(a,0,a,1),0),0,read(a,0)), k)

+
read(a, k)

This formula states that the array obtained from a by first moving all array
elements at indices > 1 down by one positions, then all elements at indices
> 0 up by one positions, and afterwards replacing the element at index 0 by
the original element read(a,0) differs at index k from the initial array a. This
formula is clearly unsatisfiable.



The formula can be converted into the following T 4 formula @:

read(write(Aj. ITE(j > 1, read(Ai. ITE(: > 0, read(a,i+ 1), read(a,?)),j — 1),
read(Ai. ITE(¢ > 0, read(a,i+ 1), read(a,)),7)),
0, read(a,0)),
) ”
read(a, k)

The flattened form is then given as (A, ¢p) where A, contains

v; = read(a, 0) ay; = Ni. 81 as = MNj. 8o
c1=i1>0 co=j>1 asz = write(az, 0, v1)
vg=i+1 vs=j—1 vg = read(a, k)

vy = read(a, va) vg = read(ay, vs) vg = read(as, k)

vy = read(a, i) vy = read(ay, j) c3 = vg # Vg

s1 = ITE(cq1, v, vyg) s9 = ITE(ca, v, v7)

and ¢y, = c3. Note that the subterm Ad. ITE(i > 0, read(a,i + 1), read(a,i)) is
shared in the flattened form. O

5.1 Eager Reduction

The first reduction reduces satisfiability of a quantifier-free T, 4 formula to sat-
isfiability of a quantifier-free 77 @ T¢ ® Teyr formula. This reduction is based
on exhaustively applying the read-over-write and read-over-A axioms in order to
eliminate all array terms except for constants. Note that this reduction estab-
lishes decidability of satisfiability for quantifier-free 7) 4 formulas in the case
where satisfiability of quantifier-free 77 & T¢ @ Teyr formulas is decidable.

Theorem 1. FEach quantifier-free Txa formula @ can effectively be converted
nto an equisatisfiable quantifier-free Tz ® Te ® Teur formula @’.

Proof. The reduction is similar to the reduction from T4 to 7z ® Te ® Teur
described in Sect. 3, i.e., the read-over-write axioms (1) and (2) and the read-
over-A axiom scheme (3) are applied exhaustively as rewrite rules using the inner-
most strategy.® Thus, if A, contains definitions ay = write(az, pi,v;) and v, =
read(ay, pn), then v, is replaced by v/, with the definition v/, = ITE(¢c, v;, v),
where the new definitions ¢ = p; = p, and v = read(ay;, p,) are added as well.
Similarly, if A, contains definitions ay = Ai. s and vy, = read(ag, p,), then vy, is
replaced by v/, where v/, names the flattened form of s[i/p,] and all definitions

m? m
needed for this flattened form are added as well.

5 The innermost reduction strategy is obeyed if the list of definitions is processed from
front to back and new definitions are added after the definition they replace.



In order to show that this rewrite process is terminating, recursively define
the function p by letting

p(write(a, p, v)

p(fur, ..., vp) (v1)+ ...+ p(vn) if f # write

(c1) + p(ea) for x € {A,V}

Thus, p counts occurrences of write and A, where multiple uses of the same
definitions are counted multiple times. Since the rewriting process is triggered
by read-definitions, it now suffices to show that each transformation step replaces
a definition of the form v,,, = read(ag, pr) by finitely many new definitions of the
form v = read(a’,p’) with p(v,,) > p(v') and does not increase the p-number
of any remaining read-definition. For both of these properties, it is sufficient to
show that p(vy,) > p(v),) when vy, is replaced by vy,.

In the first case, ar = write(a;,p;,v;) € Ay and the new definition v =
read(a;, p,) is introduced. First, note that p(p;) = p(v;) = p(prn) = p(c) = 0 due
to the innermost reduction strategy since the rewrite rules suffice to eliminate all
occurrences of write and A in terms of sort o7 or g (and thus also in propositions
since Th 4 is non-extensional). Then the desired p(v,,) > p(v),) easily follows
since p(vm) = plar) = 1+ p(ar) > p(ar) = p(vy,).

In the second case, ar = Ai. s € A, and new read-definitions are only in-
troduced in the construction of s[i/p,]. As in the first case, p(p,) = 0 due to
the innermost reduction strategy. Thus, p(v],) = p(s) and therefore p(v,,) =
plar) =1+ p(s) > p(s) = p(vy,).

After exhaustive application of the rewrite rules, a clean-up produces a
quantifier-free 77 ® Te¢ ® Teyr formula @’. Equisatisfiability of ¢ and ¢’ fol-
lows since the conversion only applies axioms of Ty 4. a

Ezample 4. Continuing Ex. 3, the definition of vg is first replaced, by an appli-
cation of the read-over-write axioms (1) and (2), by the definitions

cr=k=0 v1g = read(ag, k) vy = ITE(cq, v, v1g)

Then, the definition of vig is replaced, by an application of the read-over-A
axiom scheme (3), by the definitions

cc=k>1 v14 = read(ay, v10) vig = ITE(cs, v14, v17)
vio=k—1 v17 = read(ayq, k)

obtained from cq, v5, v, v7, and sy when constructing ss[j/k].
Next, the definitions of v14 and v17 are replaced, again by applications of the
read-over-A axiom scheme (3), by the definitions

10



ca=v10>0 v13 = read(a, v10) ns=k+1

vig + 1 vy, = ITE(cq, v12, v13) v16 = read(a, v15)

V11
v12 = read(a,v11) cs=k>0 vy, = ITE(cs, v16, vs)

obtained when constructing s1[i/v1p] and sq[i/k].
Similar replacements take place for v7 and vg. After a clean-up, the following
definitions remain:

vy = read(a, 0) v13 = read(a, v10) cg=k>1

vg = read(a, k) vy, = ITE(cq, via, v13)  vig = ITE(cs, vy, vi7)
vog=k—1 cs=k>0 cr=k=0

ca =v19 >0 vis=k+1 vy = ITE(cr, v, vig)
vi1 = v + 1 v16 = read(a, v15) c3 = vg # v
vi2 = read(a, v11) vy, = ITE(cs, vi6, vs)

Unsatisfiability of this formula can easily be established using an SMT solver
for T2 © Te © Teur- O

5.2 Using Quantifiers

The next approach reduces satisfiability of a quantifier-free 75 4 formula to sat-
isfiability of a T4 formula containing quantifiers that range over the sort oz.
The idea for the reduction is to replace a A-term Ai. s by a constant a; while
adding the constraint Vi. read(ag,?) = s that restricts the interpretation of this
constant to agree with the A-term for all indices. Note that due to the intro-
duced quantifiers, this reduction does not establish decidability of satisfiability
for quantifier-free Ty 4 formulas even if satisfiability of quantifier-free T4 formu-
las is decidable. It is, however, illustrative for the approach in Sect. 5.3, which
can be seen as a complete instantiation strategy for the introduced quantifiers.

First, the representation of formulas is extended to quantifiers by admit-
ting definitions of the form ¢ = Vi. ¢; for universal quantification (existential
quantification could also be admitted, but this is not needed for our reduction).

Theorem 2. Fach quantifier-free Txa formula @ can effectively be converted
into an equisatisfiable Ty formula @' containing universal quantifiers that range
over the sort or.

Proof. The reduction proceeds by repeating the following step: Let (A, ¢,,) be
the formula in the nth iteration (i.e., (A1,c1) = (Agp,ce)). If A, contains a
definition of the form ay = Ai. s, then this definition is deleted from A,, (turning
ay into an uninterpreted constant) and the definitions v,, = read(ag,?), ¢4, =
Vg, = S, and ov,, = Vi. cq, are added instead. Furthermore, add ¢;,+1 = cn\Cy,,
resulting in the formula (A, 11,c,+1) for the next iteration. Since ¢ contains
only finitely many A-terms and no new A-terms are introduced in the reduction,
this process eventually terminates. Furthermore, equisatisfiability of (A, ¢,) and
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(Apt1,Cny1) is easily seen for all n > 1 due to the restriction on the De Bruijn
indices of the occurrences of 7 in s. O

Ezxample 5. Continuing Ex. 3, the reduction to a quantified 74 formula produces
the following definitions:

vy = read(a,0) ey, =Vi. cq Oty = V- Cay
c1=1>0 co=j>1 a3 = write(az, 0,v1)
vo =i+ 1 vs=75—1 vg = read(a, k)

v3 = read(a, vy) vg = read(aq, vs) vg = read(as, k)

vq = read(a, 1) vy = read(ay, j) €3 = vg # Vg

s1 = ITE(eq, vs, v4) so = ITE(ca, vg, v7) ca=c3hey,,
Vg, = read(aq, 1) Vg, = read(az, j) cs =cy Aoy,

Cay = Va, = §1 Cay = Vg, = S2

The resulting formula (with ¢, = ¢5) is unsatisfiable, as can be shown, e.g.,
using the SMT solvers Z3 [26] or CVC4 [2]. O

5.3 Instantiating Quantifiers

Since reasoning involving quantifiers is hard for current SMT solvers, the goal
of this section is to develop a method that can be seen as a sound and complete
instantiation strategy for the quantifiers introduced in Sect. 5.2. For this, the
quantifier introduced for the constant ay, is instantiated for all indices that occur
in read operations v; = read(a;, p;) such that ay «j{ v;. Intuitively, these instanti-
ations are sufficient since the elements at indices that are never read from a; are
not relevant for the satisfiability status of the formula. Note that this reduction
establishes decidability of satisfiability for such quantifier-free 74 formulas in
the case where satisfiability of quantifier-free T4 formulas is decidable.

While the approach introduced in this section can be seen as an instantiation
strategy for the quantifiers, it is conceptually simpler to state it independent of
these quantifiers and give a direct reduction.

Theorem 3. Fach quantifier-free Txa formula @ can effectively be converted
into an equisatisfiable quantifier-free T4 formula @’.

Proof. The reduction proceeds by repeating the following step: Let (A, ¢,) be
the formula in the nth iteration (i.e., (A1,¢1) = (Ag,cp)). If A, contains a def-
inition of the form a; = Ai. s such that a; 742 a; for all a; = Ai’. s (the last
definition of a A-term in the list of definitions satisfies this requirement), then
let P = {p1,...,pn} denote the set of all read indices occurring in a definition
vy = read(a;, p;) with ag &;{ vy (see Ex. 7 below for an explanation why it does
not suffice to only consider definitions of the form v; = read(ax,p;)). For the
transformation, the definition of aj is deleted from A,, (turning ay into an un-

interpreted constant) and the definitions v,, = read(ax,p;) and c,;, = vp, = sp,

12



are added for all p; € P. Here, s,, names the flattened form of s[i/p;] and all
definitions needed for this flattened form are added as well. Furthermore, add the
definition ¢,+1 = ¢, Ac, where ¢ names the flattened form of ¢, A...Ac,, and all
definitions needed for this flattened form are added as well. Finally, a clean-up
is performed. The resulting formula for the next iteration is then (A,41, cny1).

This transformation process eventually terminates since ¢ contains only
finitely many A-terms and flattening s[i/p;] does not introduce any new A-terms
due to the restriction on the De Bruijn indices of the occurrences of ¢ (this as-
sumes that the construction of the flattened form of s[i/p;] maximally shares
common definitions with s).

Equisatisfiability of (A, ¢,) and (Ap41,cny1) for all all n > 1 is shown as
follows. First, assume that (A,,,c,) is satisfiable and let 9 be a model of this
formula. Let 9 be obtained from 9 by adding the interpretation 9 (ag) =
Jax]™. Then DM is a model of (A,y1,cn11) since the read-over-A axiom (3)
implies that [[read(ak,pj)ﬂgﬁ/ = [s[i/p;]I™ for all p; € P.

For the reverse direction, assume that (A, 41, cn,41) is satisfiable and consider
the assignment M(ay) in a model M of this formula (note that ay is an unin-
terpreted constant in (A,41,cpe1)). Let 9 be the structure obtained from 90t
by “forgetting” the assignment M(ax). Then MM’ is a model of (A, ¢,) since an
easy induction on the position in the list A,, shows that

1. [o]™ = [v]™ for all definitions v = ... € A, of sort o7 or og,

2. [a]™ = [a]™ for all definitions a = ... € A, of sort o4 with az £} a,

3. [read(a, p)]™ = [read(a, p)]™ for all definitions a = ... € A, of sort o4
with a; <% a and all p € P, and

4. [e]™ = [¢]™ for all definitions of propositions ¢ = ... € A,,.

The only non-trivial case in the induction is showing the third statement, but this
is ensured by the instantiations that are added as definitions in the construction
of An+1 . O

Ezxample 6. Continuing Ex. 3, the reduction to a quantifier-free T4 proceeds as
follows. First, the definition of ay is “forgotten”. The set of read indices used
for instantiation is P,, = {k} (from the definition vy = read(as, k)). Thus, the
following definitions are added to the formula:

ko ko k ko— k k
v,, = read(az, k) vg = read(aq,vy) Cay = Vg, = S5
d=k>1 vh = read(ay, k) ci=c3 Ak
k_— k_— kook ok
v =k—1 sy = ITE(¢5, vg, v7)

Here, definitions with superscript “*” are obtained from the definitions with
the same name when constructing ss[j/k|. The subsequent clean-up removes the
definitions of sg, v7, vs, vs, and cp. Finally, ¢, is updated to be c4.

Next, the definition of a; is “forgotten”. The set of read indices for a; is
P,, = {vF k} (from the definitions vf = read(ai,v¥) and v5 = read(ai,k)).
Thus, the following definitions are added to the formula:
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k — k — k _ k vk vk
v, =read(ay, k) Cay =Vq, = 81 v3® = read(a, vy°)
kE _ k k
Aa=k=>0 Cs = Ca N Cq, v, = read(a, k)
- )
k— vk k
= — k k k k
vy =k+1 va® = read(aq, vs) s% = ITE(c, %, vl®)
k . k - ) )
v = read(a, vs) P ok ok oF
k L= = Cay =Va; = Sy°
vy = read(a, k) ok X .
vy =vs +1 V5
2 = 5
s’f = ITE(c’f, v§, vff) ° C6 = C5 N\ Ca

After performing a clean-up, the formula contains the definitions

vy = read(a,0) sh = ITE(ch, vk, vb) cs =ca Ak
= wri ko— .k _ .k k
as = erte(aQ’ 0’ vl) Cay = Vay = 52 U;}? = read (al, U5)
= _ k
v read(a7 k) €4 = C3 N\ Cy, cv§ =vF>0
_ 1 =705
vy = read(as, k) vk =read(ar, k) o
J— 5 —
c3 = vg # Vg F_ ks vy =g +1
& c1 = = 0 k k
= Us — Us
vaz = read(as, k) o=kt 1 vy® = read(a, vy”)
ci=k>1 LA
i = vy = read(a,vh) v,° = read(a, k)
ve =k —1 k k k k k
i . vy = read(a, k) 51 =ITE(¢e)®, v3°, vy°)
vg = read(ay,v .
6 = readlos, o5) S SITE, o o) b gt b
k= read(ay, k) o T el
vr = at, ko—k _ k ‘
Ca, =V, = S) K

Vp
Ce = C5 N Ca)

and ¢y, = cg. Unsatisfiability of the formula can easily be shown using SMT
solvers for T4. O

The following example shows why it is necessary to add instantiations for
all v; = read(a;, p;) with ax {l" v; instead of restricting attention to those v; =
read(a;, p;) with a; = ax.

Example 7. Consider the T 4 formula (Ag, ce) with Tz = Tg = Tzz4 where Ay,
contains the definitions

a1 =M. 0 vy = read(asg, k) co=k#0
as = write(a, 0, 1) c1=v1 #£0 c3 =ci1 Acy

and ¢y = c3. Then this formula is clearly unsatisfiable.
If only definitions v; = read(a;, p;) with a; = ay are considered when elimi-
nating the definition of a1, then no instantiations are added at all and

write(a,0,1) c1=v1 #£0 c3 =c1 Acy
read(az, k) co=k#0

az

U1
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remain. This formula is satisfiable (e.g., if a; contains 1 for all indices).
Using all v; = read(a;, p;) with ag {4” a; as done in the proof of Thm. 3 adds
an instantiation for k and the definitions

vfl = read(aq, k) v1 = read(as, k) c3=c1 Ao
cslzvflzo ca=v1#0 04504/\0131
as = write(a, 0, 1) c=k#0

are obtained. Furthermore, ¢ is updated to c4. As desired, the resulting formula
is unsatisfiable. O

6 Implementation and Evaluation

We have conducted experiments with all reductions described in Sect. 5 for
determining the satisfiability of quantifier-free 7T 4. Since our motivation was the
application in the bounded model checking tool LLBMC [24], we have restricted
attention to the case where T¢ = Tz = Tpy is the theory of bit-vectors.

6.1 Loop Summarization in LLBMC

The tool LLBMC is a bounded model checker for C and (to some extent) C4+
programs. In order to support the complex and intricate syntax and semantics of
these programming languages, LLBMC uses the LLVM compiler framework [21] in
order to translate C and C++ programs into LLVM'’s intermediate representation
(IR). This IR is then converted into a quantifier-free 7, 4 formula and simplified
using an extensive set of rewrite rules. The simplified formula is finally passed
to an SMT solver. Distinguishing features of LLBMC in comparison with related
tools such as CBMC [9] and ESBMC [11] are its use of a flat, bit-precise memory
model, its exhaustive set of built-in checks, and its performance (see [24]).

The use of the LLVM compiler framework proved itself very useful in imple-
menting loop summarization in LLBMC, as LLVM provides passes for canonical-
izing loops. Furthermore, information about a the start value, end value, and
trip count of a loop’s induction variable is available using LLVM’ comprehensive
scalar evolution analysis framework.

In our implementation, summarizable loops are transformed into A-terms of
the form Ai. ITE(g, s, 7), where g is a guard indicating if a read at position %
from the A-term is in the summarized memory region or not, s is an encoding of
the value stored in the summarized loop, and r is a read from position i of the
memory state from before execution of the loop.

The implementation currently focuses on the most frequently found summa-
rizable loops and is therefore restricted to loops with a single basic block’, a
single store instruction, and at most load instructions which are executed before
the store instruction and access exactly the same memory location modified by
the store instruction.

" This restriction can be easily relaxed in the future.
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6.2 Evaluation

Within LLBMC, we have evaluated the following approaches for determining sat-
isfiability of quantifier-free Ty 4 formulas:

1. The eager reduction to Tz @ T¢ ® Teyr from Sect. 5.1 and the instantiation-
based reduction to T4 from Sect. 5.3 have been evaluated in combination
with the SMT solvers STP [15] (SVN revision 1673), Boolector [4] (version
1.5.118), Z3 [26] (version 4.3.1), and CVC4 [2] (version 1.1). Here, the SMT
solvers were executed using their C resp. C++ (CVC4) APIL

2. The quantifier-based reduction to 74 from Sect. 5.2 has been evaluated
in combination with the SMT solvers Z3 and CVC4. Note that STP and
Boolector do not support quantifiers. Since, according to its authors, the
array solver in Z3 is optimized for quantifier-free problems [25], we have
also evaluated an approach where arrays are encoded using uninterpreted
functions and quantifiers (as suggested in [25]).

3. Loops that can be summarized using A-terms can alternatively be treated
like any other loop. Consequently, the boundedness restriction inherent to
bounded model checking then applies. This approach was again evaluated in
combination with STP, Boolector, Z3, and CVC4.

These approaches have been evaluated on a collection of 81 C and C++
programs. A total of 67 of these programs contain A-terms corresponding to set
or copy operations, where 55 programs were already used in the preliminary
version of this work [14]. The set and copy operations in these programs may
occur due to several reasons:

— The source code contains an explicit call to memset or memcpy.

— Library-specific implementation details included through header files may
result in calls to memset or memcpy. This is in particular true for C++ pro-
grams that use the container classes of the STL.

— Default implementations of C++ constructors, especially the copy construc-
tor, may make use of memcpy operations to initialize objects.

The remaining 14 programs contain loops that can be summarized using A-terms
as described in Sect. 4.1. Out of the 81 programs, 20 programs contain a bug
and produce a satisfiable 74 formula. The remaining 61 programs produce
unsatisfiable Tp4 formulas. The formulas that are produced for the different
approaches are available in SMT-LIB v2 format at http://11lbmc.org/.

The results of LLBMC on the collection of examples are summarized in Table 1.
The reported times are in seconds and contain the time needed for the logical
encoding into a T4 formula, simplification of the formula, the time needed for
the reductions, and the time needed by the SMT solver. A timeout of 60 seconds
was imposed for each program and the experiments were performed on an Intel®
Core™ 2 Duo 2.4GHz with 4GB of RAM.

The results indicate that the instantiation-based reduction achieves the best
performance, regardless of the SMT solver that is used (but in particular in
combination with STP). This can also be observed in the cactus plots displayed
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Satisfiable Unsatisfiable All
SMT solver Approach||Total Time‘ S T M A|Total Time‘ S T M A|Total Time‘ STMA
STP| Instantiation 9.908/20 — — — 196.126/60 1 — — 206.034/80 1 — —
STP Eager 182.084(17 3 — — 597.460(53 8 — — 779.544|70 11 — —
STP Loops 114.663|17 1 2 — 555.863(53 5 3 — 670.526|70 6 5 —
Boolector Instantiation 112.886(19 1 — — 705.896152 9 - — 818.782|71 10 — -
Boolector Eager 189.760(17 3 — — 796.991/53 8 — — 986.751|70 11 — —
Boolector Loops 203.644(16 2 2 — 935.839(45 13 3 —| 1139.483|6115 5 —
Z3| Instantiation 126.948(18 2 — — 821.417]49 11 1 — 948.365|67 13 1 —
Z3 Eager 185.436(17 3 — — 858.196(49 12 — —| 1043.632|66 15 — —
Z3 Quantifiers 288.719(16 4 — — 833.770(49 12 — —| 1122.489|65 16 — —
Z3|Quantifiers+UF 147.033|18 2 1127.661(45 16 1274.694(63 18
Z3 Loops 364.796{13 5 2 —| 1254.787|40 18 3 —| 1619.583(53 23 5 —
CvC4| Instantiation 196.661(17 3 — — 731.418/50 11 — — 928.079|67 14 — —
CvVC4 Eager 244.884(17 3 — — 874.864/48 13 — —| 1119.748|65 16 — —
Ccvca Quantifiers 432.676| 77 — 6 974.442|47 14 — —| 1407.118|5421 - 6
CVC4|Quantifiers+UF 452.506| 7 7 — 6] 1136.908/45 16 — —| 1589.414(52 23 — 6
cvcs Loops 430.052(12 6 2 1122.646(44 13 4 1552.698(56 19 6

Table 1. Times and success rates for the different approaches on 81 benchmark prob-
lems using a timeout of 60 seconds. “S” denotes the number of solved benchmark
problems, “T” denotes the number of timeouts, “M” denotes the number of times the
SMT solver ran out of memory, and “A” denotes the number of times the SMT solver
aborted (i.e., gave up before reaching the timeout). Total times are in seconds and in-
clude timeouts, memory exhaustions, and solver aborts with their respective runtimes.

in Fig. 1. Also note that all approaches using Tx4 perform better than the
nalve implementation using loops, where the latter is furthermore incomplete in
general due to the bounded number of loop iterations that can be considered.®

7 Related Work

Decidable extensions of the theory of arrays have been considered before. Suzuki
and Jefferson [30] have studied the extension of 74 with a restricted use of
a permutation predicate. Mateti [22] has described a theory of arrays where
entries of an array can be exchanged. Jaffar [19] has investigated reading of array
segments but does not discuss writing array segments. Ghilardi et al. [16] have
considered the addition of axioms specifying the dimension of arrays, injectivity
of arrays, arrays with domains, array prefixes, array iterators, and sorted arrays.
All of these extensions are orthogonal to the theory T 4 considered in this paper.
A theory of arrays with constant-valued arrays has been proposed by Stump et
al. [29]. These constant-valued arrays can easily be modelled in Ty 4 using a
simple A-term of the form Ai. k& where k is the constant value. This theory
has also been considered in [1]. De Moura and Bjgrner [27] have introduced

8 This incompleteness does not manifest itself in the evaluation since the number of

loop iterations was chosen sufficiently large for each program. This causes LLBMC to
run out of memory on some examples, though.
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Fig. 1. Cactus plots for the 81 benchmark problems. The z-axis shows the number of
solved problems and the y-axis shows the time limit for each problem in seconds. Thus,
a curve that is closer to the bottom-right indicates a better performing approach.

combinatory array logic, which extends T4 by constant-valued arrays as in [29]
and a map combinator.

The satisfiability problem for restricted classes of quantified formulas in the
theory of arrays has been investigated as well. The work by Bradley et al. [3] iden-
tifies the array property fragment, where value constraints are restricted by index
guards in universally quantified subformulas. Note that already the special case
of the copy operation cannot be expressed in the array property fragment due to
the “pointer arithmetic” ¢+ (r — p). The conceptually simpler set operation can
be defined in the array property fragment, though. The array property fragment
was later extended by Habermehl et al. [17,18], but the “pointer arithmetic”
needed for copy is still not permitted. Finally, Zhou et al. [31] have investigated
a theory of arrays where the elements are from a finite set.

A logic containing A-terms has been considered by Bryant et al. [6], who
also show that 74 can be simulated using A-terms. The key distinction of the
present work in comparison to [6] is that we extend T4 with A-terms that denote
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anonymous arrays. This makes it possible to utilize powerful and efficient SMT
solvers for T4 in order to decide satisfiability of quantifier-free T 4 formulas using
the reduction based on instantiating quantifiers (Sect. 5.3). In contrast, [6] has to
apply B-reduction eagerly, which corresponds to our eager reduction (Sect. 5.1).
As clearly shown in Sect. 6, the instantiation-based reduction from Ty 4 to T4
performs much better than the eager reduction from Ty 4 to Tz ® Te ® Teur.

8 Conclusions and Further Work

We have presented Tj 4, an extension of the theory of arrays with A-terms. These
A-terms can be used in order to model library functions such as C’s memset and
memcpy in formal methods such as program analysis, (deductive) software veri-
fication, bounded model checking, or symbolic execution. Furthermore, we have
shown how a class of loops can automatically be summarized using such A-terms.
We have presented three reductions from T4 to theories that are supported by
current SMT solvers and have reported on an evaluation in LLBMC [24].

For future work, we are particularly interested in adding “native” support
for Txa in SMT solvers such as STP [15], Boolector [4], Z3 [26], or CVC4 [2].
For this, it will be necessary to investigate lazy axiom instantiation or lemma-
on-demand techniques for T 4 since these techniques have been fundamental for
the performance gain that SMT solvers for T4 have experienced in recent years.
A first, simple idea is to add not all instantiations from Sect. 5.3 beforehand, but
instead do this incrementally in a CEGAR-like loop guided by spurious models
generated by the SMT solver for 74. A further direction for future work is to
widen the class of loops that can be summarized using A-terms in the theory
Taa- Finally, we are interested in adding an operation similar to fold as known
from functional programming languages to the theory Th4.
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